464 research outputs found

    Physical map location of the peptide methionine sulfoxide reductase gene on the Escherichia coli chromosome

    Get PDF
    This is the publisher's version, also available electronically from "http://jb.asm.org".No abstract available

    Escherichia coli peptide methionine sulfoxide reductase gene:regulation of expression and role in protecting against oxidative damage

    Get PDF
    This is the publisher's version, also available electronically from "http://jb.asm.org".The Escherichia coli peptide methionine sulfoxide reductase gene (msrA) encodes a single-subunit polypeptide of 212 amino acid residues (M. A. Rahman, H. Nelson, H. Weissbach, and N. Brot, J. Biol. Chem. 267:15549-15551, 1992). RNA blot analysis showed that the gene is transcribed into an mRNA of about 850 nucleotides. The promoter region was characterized, and the transcription initiation site was identified by primer extension. The synthesis of the MsrA protein increased about threefold in a growth-phase-dependent fashion. In an attempt to define the in vivo role of msrA, a chromosomal disruption was constructed. This mutant was more sensitive to oxidative stress, suggesting that oxidation of methionine in proteins plays an important role in oxidative damage

    Attenuation of muscle atrophy by an N-terminal peptide of the receptor for proteolysis-inducing factor (PIF)

    Get PDF
    Background: Atrophy of skeletal muscle in cancer cachexia has been attributed to a tumour-produced highly glycosylated peptide called proteolysis-inducing factor (PIF). The action of PIF is mediated through a high-affinity membrane receptor in muscle. This study investigates the ability of peptides derived from the 20 N-terminal amino acids of the receptor to neutralise PIF action both in vitro and in vivo. Methods: Proteolysis-inducing factor was purified from the MAC16 tumour using an initial pronase digestion, followed by binding on DEAE cellulose, and the pronase was inactivated by heating to 80°C, before purification of the PIF using affinity chromatography. In vitro studies were carried out using C2C12 murine myotubes, while in vivo studies employed mice bearing the cachexia-inducing MAC16 tumour. Results: The process resulted in almost a 23?000-fold purification of PIF, but with a recovery of only 0.004%. Both the D- and L-forms of the 20mer peptide attenuated PIF-induced protein degradation in vitro through the ubiquitin-proteosome proteolytic pathway and increased expression of myosin. In vivo studies showed that neither the D- nor the L-peptides significantly attenuated weight loss, although the D-peptide did show a tendency to increase lean body mass. Conclusion: These results suggest that the peptides may be too hydrophilic to be used as therapeutic agents, but confirm the importance of the receptor in the action of the PIF on muscle protein degradation

    Cutaneous nociception and neurogenic inflammation evoked by PACAP38 and VIP

    Get PDF
    Pituitary adenylate cyclase-activating peptide-38 (PACAP38) and vasoactive intestinal peptide (VIP) belong to the same secretin–glucagon superfamily and are present in nerve fibers in dura and skin. Using a model of acute cutaneous pain we explored differences in pain perception and vasomotor responses between PACAP38 and VIP in 16 healthy volunteers in a double-blind, placebo-controlled, crossover study. All participants received intradermal injections of 200 pmol PACAP38, 200 pmol VIP and placebo into the volar forearm. Measurements included pain intensity on a visual analog scale (VAS), blood flow by laser Doppler flowmetry, visual flare and wheal. Pain intensities after PACAP38 and VIP were mild and limited to a short time of about 100 s after injection. The area under the VAS-time curve was larger following PACAP38 (P = 0.004) and VIP (P = 0.01) compared to placebo. We found no statistical difference in pain perception between PACAP38 and VIP. Skin blood flow increase, flare and wheal were larger after both PACAP38 (P = 0.011) and VIP (P = 0.001) compared to placebo. VIP induced a considerably larger increase in skin blood flow, flare and wheal than PACAP38 (P = 0.002). In conclusion, we found that peripheral nociceptive cutaneous responses elicited by PACAP38 and VIP are similar in healthy volunteers. This suggests that acute pain and vasomotor responses following intradermal injections of PACAP38 and VIP are primarily mediated by VPAC receptors

    Evaluation of the Trivedi Effect®- Energy of Consciousness Energy Healing Treatment on the Physical, Spectral, and Thermal Properties of Zinc Chloride

    Get PDF
    Zinc chloride has the importance in pharmaceutical/nutraceutical industries for the prevention and treatment of several diseases. The objective of the current study was to investigate the impact of The Trivedi Effect®-Energy of Consciousness Healing Treatment (Biofield Energy Healing Treatment) on physical, structural, and thermal properties of zinc chloride using PXRD, PSD, FT-IR, UV-vis, TGA, and DSC analysis. Zinc chloride was divided into two parts. One part was denoted as the control without any, while the other part was defined as the Trivedi Effect® Treated sample, which received the Trivedi Effect® Treatment remotely from eighteen renowned Biofield Energy Healers. The PXRD analysis revealed that the crystallite size and relative intensities of the PXRD peaks significantly altered in the treated sample compared with the control sample. The crystallite size of treated sample was decreased by 4.19% compared with the control sample. The particle size at d10 and d50 of the Biofield Energy Treated sample decreased by 4.72% and 2.70%, respectively compared with the control sample. But, the particle size of the treated sample increased at d90 by 0.83 compared with the control sample. Consequently, the surface area was increased by 3.22% in the treated sample compared with the control sample. The FT-IR spectroscopic analysis revealed that Zn-Cl stretching in the control and treated sample was at 520 cm-1 and 521 cm-1, respectively. The UV-vis analysis exhibited that the wavelength of the maximum absorbance of the control and treated samples was at 196.4 and 196.2 nm, respectively. The TGA thermograms revealed two steps of the thermal degradation and the weight loss of the treated sample was significantly reduced by 22.54% in the 1st step of degradation compared with the control sample. The DSC analysis showed that the enthalpy of decomposition was significantly increased by 34.9% in the treated sample (89.17 J/g) compared with the control sample (66.10 J/g). Overall, DSC and TGA analysis indicated that the thermal stability of the treated sample was increased compared with the control sample. The current study anticipated that The Trivedi Effect®-Energy of Consciousness Healing Treatment might lead to generate a new polymorphic form of zinc chloride, which would be more soluble, stable, and higher absorption rate compared with the control sample. Hence, the treated zinc chloride could be very useful to design the various forms of nutraceuticals and pharmaceutical formulation which might be providing a better therapeutic response against inflammatory diseases, immunological disorders, aging, stress, cancer, etc. https://www.trivedieffect.com/science/evaluation-of-the-trivedi-effect-energy-of-consciousness-energy-healing-treatment-on-the-physical-spectral-and-thermal-properties-of-zinc-chloride http://www.sciencepublishinggroup.com/journal/paperinfo?journalid=118&doi=10.11648/j.ajls.20170501.1

    Liquid Chromatography – Mass Spectrometry (LC-MS) Analysis of Withania somnifera (Ashwagandha) Root Extract Treated with the Energy of Consciousness

    Get PDF
    Withania somnifera (ashwagandha) root extract is very popular ancient herbal medicine. The objective of the study was to characterize and evaluate the impact of The Trivedi Effect®-Biofield Energy Healing Treatment (Energy of Consciousness) on phytoconstituents present in the ashwagandha root extract using LC-MS. Ashwagandha root extract was divided into two parts. One part was denoted as the control, while the other part was defined as The Trivedi Effect® - Biofield Energy Treated sample, which received Energy of Consciousness Healing Treatment remotely from eighteen renowned Biofield Energy Healers. The LC-MS analysis of the control and treated samples showed a very close retention time (Rt), indicated that the polarity of the phytoconstituents present in the root extract are same. The numbers of peaks observed in the total ion chromatograms were 28 and 29 in the control and treated samples, respectively. The change in the peak height% of the phytoconstituents in the treated sample was altered significantly within the range of -50.91% to 118.12% compared with the control sample. Similarly, the change in the peak area% of most of the phytoconstituents in the treated ashwagandha was significantly altered within the range of -54.95% to 66.95% compared with the control sample. An additional peak was appeared in the treated sample at Rt of 5.72 minutes, which was not found in the control sample. The LC-MS spectra indicated the presence of possible withanolides like -hydroxy-2,3-dihydro-withanolide F, withanolide A, withaferine A, withanone, withanolide D, ixocarpalactone A, withanolide S, thiowithanolide, etc. in both the samples. The peak are percentage (%) was altered in the identified withanolides, but withanolide sulfoxide was increased significantly by 12.44% in the treated sample compared with the control sample. These results indicated that The Trivedi Effect® - Biofield Energy Treatment might have an impact on the intrinsic physicochemical properties of the phytoconstituents present in the ashwagandha root extract. This could be the probable cause of alteration in the peak height, peak area, and appearance of a new peak in the treated sample. As a result, the concentrations of the phytoconstituents altered in the treated sample compared with the control sample. The treated ashwagandha root extract would be helpful for designing better pharmaceutical/nutraceutical formulations which might be providing a better therapeutic response against autoimmune diseases, nervous and sexual disorders, infectious diseases, antiaging, diabetes, cancer, ulcer, immunological disorders, stress, arthritis, etc. Source: https://www.trivedieffect.com/science/liquid-chromatography-mass-spectrometry-lc-ms-analysis-of-withania-somnifera-ashwagandha-root-extract-treated-with-the-energy-of-consciousness http://www.sciencepublishinggroup.com/journal/paperinfo?journalid=398&doi=10.11648/j.ajqcms.20170101.1

    Modern Clinical Research on LSD

    Get PDF
    All modern clinical studies using the classic hallucinogen lysergic acid diethylamide (LSD) in healthy subjects or patients in the last 25 years are reviewed herein. There were five recent studies in healthy participants and one in patients. In a controlled setting, LSD acutely induced bliss, audiovisual synesthesia, altered meaning of perceptions, derealization, depersonalization, and mystical experiences. These subjective effects of LSD were mediated by the 5-HT2A receptor. LSD increased feelings of closeness to others, openness, trust, and suggestibility. LSD impaired the recognition of sad and fearful faces, reduced left amygdala reactivity to fearful faces, and enhanced emotional empathy. LSD increased the emotional response to music and the meaning of music. LSD acutely produced deficits in sensorimotor gating, similar to observations in schizophrenia. LSD had weak autonomic stimulant effects and elevated plasma cortisol, prolactin, and oxytocin levels. Resting-state functional magnetic resonance studies showed that LSD acutely reduced the integrity of functional brain networks and increased connectivity between networks that normally are more dissociated. LSD increased functional thalamocortical connectivity and functional connectivity of the primary visual cortex with other brain areas. The latter effect was correlated with subjective hallucinations. LSD acutely induced global increases in brain entropy that were associated with greater trait openness 14 days later. In patients with anxiety associated with life-threatening disease, anxiety was reduced for 2 months after two doses of LSD. In medical settings, no complications of LSD administration were observed. These data should contribute to further investigations of the therapeutic potential of LSD in psychiatry

    Arabidopsis thaliana encodes a bacterial-type heterodimeric isopropylmalate isomerase involved in both Leu biosynthesis and the Met chain elongation pathway of glucosinolate formation

    Get PDF
    The last steps of the Leu biosynthetic pathway and the Met chain elongation cycle for glucosinolate formation share identical reaction types suggesting a close evolutionary relationship of these pathways. Both pathways involve the condensation of acetyl-CoA and a 2-oxo acid, isomerization of the resulting 2-malate derivative to form a 3-malate derivative, the oxidation-decarboxylation of the 3-malate derivative to give an elongated 2-oxo acid, and transamination to generate the corresponding amino acid. We have now analyzed the genes encoding the isomerization reaction, the second step of this sequence, in Arabidopsis thaliana. One gene encodes the large subunit and three encode small subunits of this enzyme, referred to as isopropylmalate isomerase (IPMI) with respect to the Leu pathway. Metabolic profiling of large subunit mutants revealed accumulation of intermediates of both Leu biosynthesis and Met chain elongation, and an altered composition of aliphatic glucosinolates demonstrating the function of this gene in both pathways. In contrast, the small subunits appear to be specialized to either Leu biosynthesis or Met chain elongation. Green fluorescent protein tagging experiments confirms the import of one of the IPMI small subunits into the chloroplast, the localization of the Met chain elongation pathway in these organelles. These results suggest the presence of different heterodimeric IPMIs in Arabidopsis chloroplasts with distinct substrate specificities for Leu or glucosinolate metabolism determined by the nature of the different small subunit
    corecore