136 research outputs found

    Stochastic resonance as a collective property of ion channel assemblies

    Get PDF
    By use of a stochastic generalization of the Hodgkin-Huxley model we investigate both the phenomena of stochastic resonance (SR) and coherence resonance (CR) in variable size patches of an excitable cell membrane. Our focus is on the challenge how internal noise stemming from individual ion channels does affect collective properties of the whole ensemble. We investigate both an unperturbed situation with no applied stimuli and one in which the membrane is stimulated externally by a periodic signal and additional external noise. For the nondriven case, we demonstrate the existence of an optimal size of the membrane patch for which the internal noise causes a most regular spike activity. This phenomenon shall be termed intrinsic CR. In presence of an applied periodic stimulus we demonstrate that the signal-to-noise ratio (SNR) exhibits SR vs. decreasing patch size, or vs. increasing internal noise strength, respectively. Moreover, we demonstrate that conventional SR vs. the external noise intensity occurs only for sufficiently large membrane patches, when the intensity of internal noise is below its optimal level. Thus, biological SR seemingly is rooted in the collective properties of large ion channel ensembles rather than in the individual stochastic dynamics of single ion channels.Comment: 9 pages, 2 figure

    Effect of channel block on the spiking activity of excitable membranes in a stochastic Hodgkin-Huxley model

    Full text link
    The influence of intrinsic channel noise on the spontaneous spiking activity of poisoned excitable membrane patches is studied by use of a stochastic generalization of the Hodgkin-Huxley model. Internal noise stemming from the stochastic dynamics of individual ion channels is known to affect the collective properties of the whole ion channel cluster. For example, there exists an optimal size of the membrane patch for which the internal noise alone causes a regular spontaneous generation of action potentials. In addition to varying the size of ion channel clusters, living organisms may adapt the densities of ion channels in order to optimally regulate the spontaneous spiking activity. The influence of channel block on the excitability of a membrane patch of certain size is twofold: First, a variation of ion channel densities primarily yields a change of the conductance level. Second, a down-regulation of working ion channels always increases the channel noise. While the former effect dominates in the case of sodium channel block resulting in a reduced spiking activity, the latter enhances the generation of spontaneous action potentials in the case of a tailored potassium channel blocking. Moreover, by blocking some portion of either potassium or sodium ion channels, it is possible to either increase or to decrease the regularity of the spike train.Comment: 10 pages, 3 figures, published 200

    Capacitance fluctuations causing channel noise reduction in stochastic Hodgkin-Huxley systems

    Full text link
    Voltage-dependent ion channels determine the electric properties of axonal cell membranes. They not only allow the passage of ions through the cell membrane but also contribute to an additional charging of the cell membrane resulting in the so-called capacitance loading. The switching of the channel gates between an open and a closed configuration is intrinsically related to the movement of gating charge within the cell membrane. At the beginning of an action potential the transient gating current is opposite to the direction of the current of sodium ions through the membrane. Therefore, the excitability is expected to become reduced due to the influence of a gating current. Our stochastic Hodgkin-Huxley like modeling takes into account both the channel noise -- i.e. the fluctuations of the number of open ion channels -- and the capacitance fluctuations that result from the dynamics of the gating charge. We investigate the spiking dynamics of membrane patches of variable size and analyze the statistics of the spontaneous spiking. As a main result, we find that the gating currents yield a drastic reduction of the spontaneous spiking rate for sufficiently large ion channel clusters. Consequently, this demonstrates a prominent mechanism for channel noise reduction.Comment: 18 page

    Cavitation Inception on Microparticles: A Self-Propelled Particle Accelerator

    Get PDF
    Corrugated, hydrophilic particles with diameters between 30 �m and 150 �m are found to cause cavitation inception at their surfaces when they are exposed to a short, intensive tensile stress wave. The growth of cavity and its interaction with the original nucleating particle is recorded by means of digital imaging. The growing cavity accelerates the particle into translatory motion until the tensile stress decreases, and subsequently the particle separates from the cavity. The cavity growth and particle detachment are modeled by considering the momentum of the particle and the displaced liquid. The analysis suggests that all particles which cause cavitation are accelerated into translatory motion, and separate from the cavities they themselves nucleate

    Failed back surgeries and minnesota multiphasic personality inventory (MMPI) profiles

    Full text link
    MMPI profiles were evaluated for 105 prospective surgical patients who had previously undergone surgery or other procedures for treatment of back pain. Patients were classified into groups having undergone zero, one, two, three, or four or more previous surgeries. While all groups demonstrated a characteristic somatogenic profile, none of the MMPI validity or clinical scales significantly differentiated the groups and there was no relationship between increased number of surgeries and MMPI scale characteristics. These results support the nonoptimistic prognostication of the somatogenic MMPI profile for surgical intervention for back pain but show no clear relationship of MMPI profile characteristics to degree of experience of previously failed surgery.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/44850/1/10880_2005_Article_BF01999744.pd

    Monitoring groundwater storage changes in the highly seasonal humid tropics: Validation of GRACE measurements in the Bengal Basin

    Get PDF
    International audienceSatellite monitoring of changes in terrestrial water storage provides invaluable information regarding the basin-scale dynamics of hydrological systems where ground-based records are limited. In the Bengal Basin of Bangladesh, we test the ability of satellite measurements under the Gravity Recovery and Climate Experiment (GRACE) to trace both the seasonality and trend in groundwater storage associated with intensive groundwater abstraction for dry-season irrigation and wet-season (monsoonal) recharge. We show that GRACE (CSR, GRGS) datasets of recent (2003 to 2007) groundwater storage changes (ΔGWS) correlate well (r = 0.77 to 0.93, p value < 0.0001) with in situ borehole records from a network of 236 monitoring stations and account for 44% of the total variation in terrestrial water storage (ΔTWS) highest correlation (r = 0.93, p value < 0.0001) and lowest root-mean-square error (<4 cm) are realized using a spherical harmonic product of CSR. Changes in surface water storage estimated from a network of 298 river gauging stations and soil-moisture derived from Land Surface Models explain 22% and 33% of ΔTWS, respectively. Groundwater depletion estimated from borehole hydrographs (-0.52 ± 0.30 km3 yr-1) is within the range of satellite-derived estimates (-0.44 to -2.04 km3 yr-1) that result from uncertainty associated with the simulation of soil moisture (CLM, NOAH, VIC) and GRACE signal-processing techniques. Recent (2003 to 2007) estimates of groundwater depletion are substantially greater than long-term (1985 to 2007) mean (-0.21 ± 0.03 km3 yr-1) and are explained primarily by substantial increases in groundwater abstraction for the dry-season irrigation and public water supplies over the last two decades

    Minimal state models for ionic channels involved in glucagon secretion

    Get PDF
    Pancreatic alpha cells synthesize and release glucagon. This hormone along with insulin, preserves blood glucose levels within a physiological range. During low glucose levels, alpha cells exhibit electrical activity related to glucagon secretion. In this paper, we introduce minimal state models for those ionic channels involved in this electrical activity in mice alpha cells. For estimation of model parameters, we use Monte Carlo algorithms to fit steadystate channel currents. Then, we simulate dynamic ionic currents following experimental protocols. Our aims are 1) To understand the individual ionic channel functioning and modulation that could affect glucagon secretion, and 2) To simulate ionic currents actually measured in voltage-clamp alpha-cell experiments in mice. Our estimations indicate that alpha cells are highly permeable to sodium and potassium which mainly manage action potentials. We have also found that our estimated N-type calcium channel population and density in alpha cells is in good agreement to those reported for L-type calcium channels in beta cells. This finding is strongly relevant since both, L-type and N-type calcium channels, play a main role in insulin and glucagon secretion, respectively

    Chromosome microarray analysis as first-line test in pregnancies with a priori low risk for detection of submicroscopic chromosomal abnormalities

    Get PDF
    n this study, we aimed to explore the utility of chromosomal microarray analysis (CMA) in groups of pregnancies with a priori low risk for detection of submicroscopic chromosome abnormalities, usually not considered an indication for testing, in order to assess whether CMA improves the detection rate of prenatal chromosomal aberrations. A total of 3000 prenatal samples were processed in parallel using both whole-genome CMA and conventional karyotyping. The indications for prenatal testing included: advanced maternal age, maternal serum screening test abnormality, abnormal ultrasound findings, known abnormal fetal karyotype, parental anxiety, family history of a genetic condition and cell culture failure. The use of CMA resulted in an increased detection rate regardless of the indication for analysis. This was evident in high risk groups (abnormal ultrasound findings and abnormal fetal karyotype), in which the percentage of detection was 5.8% (7/120), and also in low risk groups, such as advanced maternal age (6/1118, 0.5%), and parental anxiety (11/1674, 0.7%). A total of 24 (0.8%) fetal conditions would have remained undiagnosed if only a standard karyotype had been performed. Importantly, 17 (0.6%) of such findings would have otherwise been overlooked if CMA was offered only to high risk pregnancies.The results of this study suggest that more widespread CMA testing of fetuses would result in a higher detection of clinically relevant chromosome abnormalities, even in low risk pregnancies. Our findings provide substantial evidence for the introduction of CMA as a first-line diagnostic test for all pregnant women undergoing invasive prenatal testing, regardless of risk factors
    • …
    corecore