139 research outputs found
Recommended from our members
Estimation of Groundwater Recharge to the Gulf Coast Aquifer in Texas, USA
Quantifying groundwater recharge is essential for managing water resources in aquifers. The objective of this study was to quantify spatial variability in recharge in the outcrop zones of the Gulf Coast aquifer in Texas.
Regional recharge was estimated using the chloride mass balance approach applied to groundwater chloride data from the TWDB database in 10,530 wells, which represented the most recent samples from wells located in the region. Regional groundwater recharge was also estimated using streamflow hydrograph separation in 59 watersheds using USGS unregulated gage data. Recharge was also estimated by applying the chloride mass balance approach to unsaturated zone chloride data from 27 boreholes that represented a range of precipitation, land use, and soil texture settings in the central and southern Gulf Coast regions.
Groundwater chloride concentrations generally decrease from the southern to the northern Gulf Coast, qualitatively indicating increasing recharge in this direction with increasing precipitation. Ratios of chloride to bromide are less than 150 to 200 throughout most of the Gulf Coast, suggesting a predominantly meteoric source for groundwater chloride.
Recharge rates based on the chloride mass balance approach range from less than 0.1 in/yr in the south to 10 in/yr in the north, correlated with increasing precipitation. Streamflow ranges from ephemeral in parts of the southern Gulf Coast to perennial throughout the rest of the Gulf Coast based on flow duration curves. Hydrograph separation using Base-Flow Index (BFI) showed that recharge increased from south to north, similar to increases in recharge based on groundwater chloride data.
Unsaturated zone profiles show high local variability in chloride concentrations, with mean concentrations below the root zone ranging from 7 to 10,200 mg/L. Resultant percolation rates below the root zone based on the chloride mass balance approach range from less than 0.1 to 6.8 in/yr. In some areas, variations in percolation rates are related to differences in soil texture, whereas in other regions, they are related to differences in land use. However, there is no systematic variation in percolation rates throughout the region, unlike the trends in recharge with regional precipitation from groundwater chloride data and stream hydrograph separation.
Recharge rates based on groundwater chloride data can be considered to provide a conservative lower bound on actual recharge because many processes can add chloride to the system, resulting in lower recharge rates whereas there are no processes that can remove chloride from the system in the Gulf Coast. Stream hydrograph separation provides recharge rates in contributing basins that do not cover the entire Gulf Coast region. Recharge estimates from the chloride mass balance applied to groundwater and perennial stream hydrograph separation are highly correlated (r = 0.96), and differences between these two sets of recharge estimates can be used to evaluate uncertainties in recharge rates in contributing basins to the stream gages.
Recharge rates from groundwater chloride and streamflow hydrograph separation can be used to provide a range of recharge rates for future groundwater models of the Gulf Coast aquifer.Bureau of Economic Geolog
Stochastic resonance as a collective property of ion channel assemblies
By use of a stochastic generalization of the Hodgkin-Huxley model we
investigate both the phenomena of stochastic resonance (SR) and coherence
resonance (CR) in variable size patches of an excitable cell membrane. Our
focus is on the challenge how internal noise stemming from individual ion
channels does affect collective properties of the whole ensemble. We
investigate both an unperturbed situation with no applied stimuli and one in
which the membrane is stimulated externally by a periodic signal and additional
external noise. For the nondriven case, we demonstrate the existence of an
optimal size of the membrane patch for which the internal noise causes a most
regular spike activity. This phenomenon shall be termed intrinsic CR. In
presence of an applied periodic stimulus we demonstrate that the
signal-to-noise ratio (SNR) exhibits SR vs. decreasing patch size, or vs.
increasing internal noise strength, respectively. Moreover, we demonstrate that
conventional SR vs. the external noise intensity occurs only for sufficiently
large membrane patches, when the intensity of internal noise is below its
optimal level. Thus, biological SR seemingly is rooted in the collective
properties of large ion channel ensembles rather than in the individual
stochastic dynamics of single ion channels.Comment: 9 pages, 2 figure
Effect of channel block on the spiking activity of excitable membranes in a stochastic Hodgkin-Huxley model
The influence of intrinsic channel noise on the spontaneous spiking activity
of poisoned excitable membrane patches is studied by use of a stochastic
generalization of the Hodgkin-Huxley model. Internal noise stemming from the
stochastic dynamics of individual ion channels is known to affect the
collective properties of the whole ion channel cluster. For example, there
exists an optimal size of the membrane patch for which the internal noise alone
causes a regular spontaneous generation of action potentials. In addition to
varying the size of ion channel clusters, living organisms may adapt the
densities of ion channels in order to optimally regulate the spontaneous
spiking activity. The influence of channel block on the excitability of a
membrane patch of certain size is twofold: First, a variation of ion channel
densities primarily yields a change of the conductance level. Second, a
down-regulation of working ion channels always increases the channel noise.
While the former effect dominates in the case of sodium channel block resulting
in a reduced spiking activity, the latter enhances the generation of
spontaneous action potentials in the case of a tailored potassium channel
blocking. Moreover, by blocking some portion of either potassium or sodium ion
channels, it is possible to either increase or to decrease the regularity of
the spike train.Comment: 10 pages, 3 figures, published 200
Capacitance fluctuations causing channel noise reduction in stochastic Hodgkin-Huxley systems
Voltage-dependent ion channels determine the electric properties of axonal
cell membranes. They not only allow the passage of ions through the cell
membrane but also contribute to an additional charging of the cell membrane
resulting in the so-called capacitance loading. The switching of the channel
gates between an open and a closed configuration is intrinsically related to
the movement of gating charge within the cell membrane. At the beginning of an
action potential the transient gating current is opposite to the direction of
the current of sodium ions through the membrane. Therefore, the excitability is
expected to become reduced due to the influence of a gating current. Our
stochastic Hodgkin-Huxley like modeling takes into account both the channel
noise -- i.e. the fluctuations of the number of open ion channels -- and the
capacitance fluctuations that result from the dynamics of the gating charge. We
investigate the spiking dynamics of membrane patches of variable size and
analyze the statistics of the spontaneous spiking. As a main result, we find
that the gating currents yield a drastic reduction of the spontaneous spiking
rate for sufficiently large ion channel clusters. Consequently, this
demonstrates a prominent mechanism for channel noise reduction.Comment: 18 page
Cavitation Inception on Microparticles: A Self-Propelled Particle Accelerator
Corrugated, hydrophilic particles with diameters between 30 �m and 150 �m are found to cause cavitation inception at their surfaces when they are exposed to a short, intensive tensile stress wave. The growth of cavity and its interaction with the original nucleating particle is recorded by means of digital imaging. The growing cavity accelerates the particle into translatory motion until the tensile stress decreases, and subsequently the particle separates from the cavity. The cavity growth and particle detachment are modeled by considering the momentum of the particle and the displaced liquid. The analysis suggests that all particles which cause cavitation are accelerated into translatory motion, and separate from the cavities they themselves nucleate
Failed back surgeries and minnesota multiphasic personality inventory (MMPI) profiles
MMPI profiles were evaluated for 105 prospective surgical patients who had previously undergone surgery or other procedures for treatment of back pain. Patients were classified into groups having undergone zero, one, two, three, or four or more previous surgeries. While all groups demonstrated a characteristic somatogenic profile, none of the MMPI validity or clinical scales significantly differentiated the groups and there was no relationship between increased number of surgeries and MMPI scale characteristics. These results support the nonoptimistic prognostication of the somatogenic MMPI profile for surgical intervention for back pain but show no clear relationship of MMPI profile characteristics to degree of experience of previously failed surgery.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/44850/1/10880_2005_Article_BF01999744.pd
Monitoring groundwater storage changes in the highly seasonal humid tropics: Validation of GRACE measurements in the Bengal Basin
International audienceSatellite monitoring of changes in terrestrial water storage provides invaluable information regarding the basin-scale dynamics of hydrological systems where ground-based records are limited. In the Bengal Basin of Bangladesh, we test the ability of satellite measurements under the Gravity Recovery and Climate Experiment (GRACE) to trace both the seasonality and trend in groundwater storage associated with intensive groundwater abstraction for dry-season irrigation and wet-season (monsoonal) recharge. We show that GRACE (CSR, GRGS) datasets of recent (2003 to 2007) groundwater storage changes (ΔGWS) correlate well (r = 0.77 to 0.93, p value < 0.0001) with in situ borehole records from a network of 236 monitoring stations and account for 44% of the total variation in terrestrial water storage (ΔTWS) highest correlation (r = 0.93, p value < 0.0001) and lowest root-mean-square error (<4 cm) are realized using a spherical harmonic product of CSR. Changes in surface water storage estimated from a network of 298 river gauging stations and soil-moisture derived from Land Surface Models explain 22% and 33% of ΔTWS, respectively. Groundwater depletion estimated from borehole hydrographs (-0.52 ± 0.30 km3 yr-1) is within the range of satellite-derived estimates (-0.44 to -2.04 km3 yr-1) that result from uncertainty associated with the simulation of soil moisture (CLM, NOAH, VIC) and GRACE signal-processing techniques. Recent (2003 to 2007) estimates of groundwater depletion are substantially greater than long-term (1985 to 2007) mean (-0.21 ± 0.03 km3 yr-1) and are explained primarily by substantial increases in groundwater abstraction for the dry-season irrigation and public water supplies over the last two decades
Optically detected magnetic resonance spectroscopic analyses on the role of magnetic ions in colloidal nanocrystals
Incorporating magnetic ions into semiconductor nanocrystals has emerged as a prominent research field for manipulating spin-related properties. The magnetic ions within the host semiconductor experience spin-exchange interactions with photogenerated carriers and are often involved in the recombination routes, stimulating special magneto-optical effects. The current account presents a comparative study, emphasizing the impact of engineering nanostructures and selecting magnetic ions in shaping carrier-magnetic ion interactions. Various host materials, including the II-VI group, halide perovskites, and I-III-VI2 in diverse structural configurations such as core/shell quantum dots, seeded nanorods, and nanoplatelets, incorporated with magnetic ions such as Mn2+, Ni2+, and Cu1+/2+ are highlighted. These materials have recently been investigated by us using state-of-the-art steady-state and transient optically detected magnetic resonance (ODMR) spectroscopy to explore individual spin-dynamics between the photogenerated carriers and magnetic ions and their dependence on morphology, location, crystal composition, and type of the magnetic ion. The information extracted from the analyses of the ODMR spectra in those studies exposes fundamental physical parameters, such as g-factors, exchange coupling constants, and hyperfine interactions, together providing insights into the nature of the carrier (electron, hole, dopant), its local surroundings (isotropic/anisotropic), and spin dynamics. The findings illuminate the importance of ODMR spectroscopy in advancing our understanding of the role of magnetic ions in semiconductor nanocrystals and offer valuable knowledge for designing magnetic materials intended for various spin-related technologies
Minimal state models for ionic channels involved in glucagon secretion
Pancreatic alpha cells synthesize and release glucagon. This hormone along with insulin, preserves blood glucose levels within a physiological range. During low glucose levels, alpha cells exhibit electrical activity related to glucagon secretion. In this paper, we introduce minimal state models for those ionic channels involved in this electrical activity in mice alpha cells. For estimation of model parameters, we use Monte Carlo algorithms to fit steadystate channel currents. Then, we simulate dynamic ionic currents following experimental protocols. Our aims are 1) To understand the individual ionic channel functioning and modulation that could affect glucagon secretion, and 2) To simulate ionic currents actually measured in voltage-clamp alpha-cell experiments in mice. Our estimations indicate that alpha cells are highly permeable to sodium and potassium which mainly manage action potentials. We have also found that our estimated N-type calcium channel population and density in alpha cells is in good agreement to those reported for L-type calcium channels in beta cells. This finding is strongly relevant since both, L-type and N-type calcium channels, play a main role in insulin and glucagon secretion, respectively
Chromosome microarray analysis as first-line test in pregnancies with a priori low risk for detection of submicroscopic chromosomal abnormalities
n this study, we aimed to explore the utility of chromosomal microarray analysis (CMA) in groups of pregnancies with a priori low risk for detection of submicroscopic chromosome abnormalities, usually not considered an indication for testing, in order to assess whether CMA improves the detection rate of prenatal chromosomal aberrations. A total of 3000 prenatal samples were processed in parallel using both whole-genome CMA and conventional karyotyping. The indications for prenatal testing included: advanced maternal age, maternal serum screening test abnormality, abnormal ultrasound findings, known abnormal fetal karyotype, parental anxiety, family history of a genetic condition and cell culture failure. The use of CMA resulted in an increased detection rate regardless of the indication for analysis. This was evident in high risk groups (abnormal ultrasound findings and abnormal fetal karyotype), in which the percentage of detection was 5.8% (7/120), and also in low risk groups, such as advanced maternal age (6/1118, 0.5%), and parental anxiety (11/1674, 0.7%). A total of 24 (0.8%) fetal conditions would have remained undiagnosed if only a standard karyotype had been performed. Importantly, 17 (0.6%) of such findings would have otherwise been overlooked if CMA was offered only to high risk pregnancies.The results of this study suggest that more widespread CMA testing of fetuses would result in a higher detection of clinically relevant chromosome abnormalities, even in low risk pregnancies. Our findings provide substantial evidence for the introduction of CMA as a first-line diagnostic test for all pregnant women undergoing invasive prenatal testing, regardless of risk factors
- …