106 research outputs found

    Fuels Guide for Sagebrush and Pinyon-Juniper Treatments: 10 Years Post-Treatment

    Get PDF
    Increased woody plant dominance and degraded understory vegetation are important issues on rangelands in the Intermountain West. Land managers implement woody plant reduction treatments of sagebrush (Artemisia spp.), juniper (Juniperus spp.), and pinyon pine (Pinus spp.) to increase understory diversity and cover, restore wildlife habitat, increase forage, improve ecosystem functions, and reduce or manipulate fuels to increase ecosystem resilience to fire and resistance to invasive annual grasses. Woody plant reduction treatments alter fuel orientation, continuity, and loading, and therefore have important implications for wildfire behavior, effects, and management. Currently, there is a lack of knowledge of the longer-term implications of these treatments on fuel loads and vegetation structure. Using data collected as part of the Sagebrush Steppe Treatment Evaluation Project (SageSTEP), this guide summarizes fuel loads, vegetation cover by functional group, and shrub and tree stem density 10 years after sagebrush and pinyon-juniper reduction treatments. The data was collected at 16 study sites in Washington, Oregon, California, Nevada, and Utah, and is summarized by treatment type, region, and groups or woodland development phases based on pre-treatment vegetation. These summarized data can be used by land managers and fire behavior specialists to quickly estimate fuel loads in older treatments or to predict fuel loads 10 years after a potential treatment. These fuel loading data can be used to create custom fuel beds to model fire behavior and effects

    A Field Guide for Grasses and Grass-like Plants of Idaho

    Get PDF
    The purpose of this project is to develop a user-friendly field guide to grasses and grass-like plants in Idaho, specifically geared to those with limited background in botany. The guide will feature 60 Idaho grasses and grass-like plants, intended for K-16 educators and students, ranchers, land owners, recreationists, and nature enthusiasts, with accompanying K-12 lesson plans. In the form of both a printed book and an offline app for iPhones and Androids, the guide will include colorful images showing detailed characteristics and vegetative features of each grass, an easy-to-use dichotomous key, and information on each plant’s history, forage value, and fire resistance. This dual resource will meet the needs of land managers making economic decisions regarding livestock production and field treatments; university students in wildlife and range sciences conducting class exercises and field research; K-12 educators during field botany excursions, teaching the use of dichotomous keys, and ecosystem studies; and recreationists engaged in nature study. Both book and app will be distributed via the University of Idaho Rangeland Center and the Idaho Range Resource Commission

    Treatment Longevity and Changes in Surface Fuel Loads After Pinyon–Juniper Mastication

    Get PDF
    In the Intermountain West, land managers masticate pinyon pine (Pinus spp.) and juniper (Juniperus spp.) trees that have encroached sagebrush steppe communities to reduce canopy fuels, alter potential fire behavior, and promote growth of understory grasses, forbs, and shrubs. At three study sites in Utah, 45 sampling plots spanning a range of tree cover from 5% to 50% were masticated. We measured surface fuel load components three times over a 10‐yr period. We also measured tree cover, density, and height as indicators of treatment longevity. Changes in these variables were analyzed across the range of pre‐treatment tree cover using linear mixed effects modeling. We detected decreases in 1‐h down woody debris by 5–6 yr post‐treatment, and from 5–6 to 10 yr post‐treatment, but did not detect changes in 10‐h or 100 + 1000‐h down woody debris. By 10 yr post‐treatment, there was very little duff and tree litter left for all pre‐treatment tree cover values. Herbaceous fuels (all standing live and dead biomass) increased through 10 yr post‐treatment. At 10 yr post‐treatment, pinyon–juniper cover ranged 0–2.6%, and the majority of trees were1‐h fuels were the only class of down woody debris that decreased, it may be beneficial to masticate woody fuels to the finest size possible. Decreases in 1‐h down woody debris and duff + litter fuels over time may have important implications for fire behavior and effects, but increases in herbaceous and shrub fuel loads should also be taken into account. At 10 yr post‐treatment, understory grasses and shrubs were not being outcompeted by trees, and average pinyon–juniper canopy cover wa

    Structural and Functional Connectivity as a Driver of Hillslope Erosion Following Disturbance

    Get PDF
    Hydrologic response to rainfall on fragmented or burnt hillslopes is strongly influenced by the ensuing connectivity of runoff and erosion processes. Yet cross-scale process connectivity is seldom evaluated in field studies owing to scale limitations in experimental design. This study quantified surface susceptibility and hydrologic response across point to hillslope scales at two degraded unburnt and burnt woodland sites using rainfall simulation and hydrologic modelling. High runoff (31–47 mm) and erosion (154–1893 g m–2) measured at the patch scale (13 m2) were associated with accumulation of fine-scale (0.5-m2) splash-sheet runoff and sediment and concentrated flow formation through contiguous bare zones (64–85% bare ground). Burning increased the continuity of runoff and sediment availability and yield. Cumulative runoff was consistent across plot scales whereas erosion increased with increasing plot area due to enhanced sediment detachment and transport. Modelled hillslope-scale runoff and erosion reflected measured patch-scale trends and the connectivity of processes and sediment availability. The cross-scale experiments and model predictions indicate the magnitude of hillslope response is governed by rainfall input and connectivity of surface susceptibility, sediment availability, and runoff and erosion processes. The results demonstrate the importance in considering cross-scale structural and functional connectivity when forecasting hydrologic and erosion responses to disturbances

    Incorporating Hydrologic Data and Ecohydrologic Relationships into Ecological Site Descriptions

    Get PDF
    The purpose of this paper is to recommend a framework and methodology for incorporating hydrologic data and ecohydrologic relationships in Ecological Site Descriptions (ESDs) and thereby enhance the utility of ESDs for assessing rangelands and guiding resilience-based management strategies. Resilience-based strategies assess and manage ecological state dynamics that affect state vulnerability and, therefore, provide opportunities to adapt management. Many rangelands are spatially heterogeneous or sparsely vegetated where the vegetation structure strongly influences infiltration and soil retention. Infiltration and soil retention further influence soil water recharge, nutrient availability, and overall plant productivity. These key ecohydrologic relationships govern the ecologic resilience of the various states and community phases on many rangeland ecological sites (ESs) and are strongly affected by management practices, land use, and disturbances. However, ecohydrologic data and relationships are often missing in ESDs and state-and-transition models (STMs). To address this void, we used literature to determine the data required for inclusion of key ecohydrologic feedbacks into ESDs, developed a framework and methodology for data integration within the current ESD structure, and applied the framework to a select ES for demonstrative purposes. We also evaluated the utility of the Rangeland Hydrology and Erosion Model (RHEM) for assessment and enhancement of ESDs based in part on hydrologic function. We present the framework as a broadly applicable methodology for integrating ecohydrologic relationships and feedbacks into ESDs and resilience-based management strategies. Our proposed framework increases the utility of ESDs to assess rangelands, target conservation and restoration practices, and predict ecosystem responses to management. The integration of RHEM technology and our suggested framework on ecohydrologic relations expands the ecological foundation of the overall ESD concept for rangeland management and is well aligned with resilience-based, adaptive management of US rangelands. The proposed enhancement of ESDs will improve communication between private land owners and resource managers and researchers across multiple disciplines in the field of rangeland management

    Genome editing in food and feed production – implications for risk assessment. Scientific Opinion of the Scientific Steering Committee of the Norwegian Scientific Committee for Food and Environment

    Get PDF
    The Norwegian Scientific Committee for Food and Environment (VKM) initiated this work to examine the extent to which organisms developed by genome-editing technologies pose new challenges in terms of risk assessment. This report considers whether the risk assessment guidance on genetically modified organisms, developed by the European Food Safety Authority (EFSA), can be applied to evaluate potential risks of organisms developed by genome editing. Background Gene technology has allowed for the transfer of genes between organisms and species, and thereby to design altered genotypes with novel traits, i.e. GMOs. A new paradigm started in the early 2000s with the development of genome-editing techniques. Unlike traditional genetic modification techniques resulting in insertion of foreign DNA fragments at random locations in the genome, the new genome-editing techniques additionally open for a few single nucleotide edits or short insertions/deletions at a targeted site in an organism’s genome. These new techniques can be applied to most types of organisms, including plants, animals and microorganisms of commercial interest. An important question is how the novel, genome-edited organisms should be evaluated with respect to risks to health and the environment. The European Court of Justice decided in 2018 to include genome-edited organisms in the GMO definition and hence in the regulatory system already in place. This implies that all products developed by genome-editing techniques must be risk-assessed within the existing regulatory framework for GMOs. The European and Norwegian regulatory frameworks regulate the production, import and placing on the market of food and feed containing, consisting of or produced from GMOs, as well as the release of GMOs into the environment. The assessment draws on guidance documents originally developed by EFSA for risk assessment of GMOs, which were drawn up mainly to address risks regarding insertion of transgenes. The new genome-editing techniques, however, provide a new continuum of organisms ranging from those only containing a minor genetic alteration to organisms containing insertion or deletion of larger genomic regions. Risk assessment of organisms developed by genome editing The present discourse on how new genome-editing techniques should be regulated lacks an analysis of whether risk assessment methodologies for GMOs are adequate for risk assessment of organisms developed through the use of the new genome-editing techniques. Therefore, this report describes the use of genome-editing techniques in food and feed production and discusses challenges in risk assessment with the regulatory framework. Specifically, this report poses the question as to whether the EFSA guidance documents are sufficient for evaluating risks to health and environment posed by genome-edited plants, animals and microorganisms. To address these questions, the report makes use of case examples relevant for Norway. These examples, intended for food and feed, include oilseed rape with a modified fatty acid profile, herbicide-tolerant and pest-resistant crops, sterile salmon, virus-resistant pigs and hornless cattle. The report considers all aspects of the stepwise approach as described in the EFSA guidance documents. Conclusions The inherent flexibility of the EFSA guidance makes it suitable to cover health and environmental risk assessments of a wide range of organisms with various traits and intended uses. Combined with the embedded case-by-case approach the guidance is applicable to genome-edited organisms. The evaluation of the guidance demonstrates that the parts of the health and environmental risk assessment concerned with novel traits (i.e. the phenotype of the organism) may be fully applied to all categories of genome-edited organisms. ............publishedVersio

    Genome editing in food and feed production – implications for risk assessment. Scientific Opinion of the Scientific Steering Committee of the Norwegian Scientific Committee for Food and Environment

    Get PDF
    The Norwegian Scientific Committee for Food and Environment (VKM) initiated this work to examine the extent to which organisms developed by genome-editing technologies pose new challenges in terms of risk assessment. This report considers whether the risk assessment guidance on genetically modified organisms, developed by the European Food Safety Authority (EFSA), can be applied to evaluate potential risks of organisms developed by genome editing. Background Gene technology has allowed for the transfer of genes between organisms and species, and thereby to design altered genotypes with novel traits, i.e. GMOs. A new paradigm started in the early 2000s with the development of genome-editing techniques. Unlike traditional genetic modification techniques resulting in insertion of foreign DNA fragments at random locations in the genome, the new genome-editing techniques additionally open for a few single nucleotide edits or short insertions/deletions at a targeted site in an organism’s genome. These new techniques can be applied to most types of organisms, including plants, animals and microorganisms of commercial interest. An important question is how the novel, genome-edited organisms should be evaluated with respect to risks to health and the environment. The European Court of Justice decided in 2018 to include genome-edited organisms in the GMO definition and hence in the regulatory system already in place. This implies that all products developed by genome-editing techniques must be risk-assessed within the existing regulatory framework for GMOs. The European and Norwegian regulatory frameworks regulate the production, import and placing on the market of food and feed containing, consisting of or produced from GMOs, as well as the release of GMOs into the environment. The assessment draws on guidance documents originally developed by EFSA for risk assessment of GMOs, which were drawn up mainly to address risks regarding insertion of transgenes. The new genome-editing techniques, however, provide a new continuum of organisms ranging from those only containing a minor genetic alteration to organisms containing insertion or deletion of larger genomic regions. Risk assessment of organisms developed by genome editing The present discourse on how new genome-editing techniques should be regulated lacks an analysis of whether risk assessment methodologies for GMOs are adequate for risk assessment of organisms developed through the use of the new genome-editing techniques. Therefore, this report describes the use of genome-editing techniques in food and feed production and discusses challenges in risk assessment with the regulatory framework. Specifically, this report poses the question as to whether the EFSA guidance documents are sufficient for evaluating risks to health and environment posed by genome-edited plants, animals and microorganisms. To address these questions, the report makes use of case examples relevant for Norway. These examples, intended for food and feed, include oilseed rape with a modified fatty acid profile, herbicide-tolerant and pest-resistant crops, sterile salmon, virus-resistant pigs and hornless cattle. The report considers all aspects of the stepwise approach as described in the EFSA guidance documents. Conclusions The inherent flexibility of the EFSA guidance makes it suitable to cover health and environmental risk assessments of a wide range of organisms with various traits and intended uses. Combined with the embedded case-by-case approach the guidance is applicable to genome-edited organisms. The evaluation of the guidance demonstrates that the parts of the health and environmental risk assessment concerned with novel traits (i.e. the phenotype of the organism) may be fully applied to all categories of genome-edited organisms. ............acceptedVersionpublishedVersio
    • 

    corecore