159 research outputs found

    Universality in antiferromagnetic strange metals

    Full text link
    We propose a theory of metals at the spin-density wave quantum critical point in spatial dimension d=2d=2. We provide a first estimate of the full set of critical exponents (dynamical exponent z=2.13z=2.13, correlation length ν=1.02\nu =1.02, spin susceptibility γ=0.96\gamma = 0.96, electronic non-Fermi liquid ητf=0.53\eta^f_\tau = 0.53, spin-wave Landau damping ητb=1.06\eta^b_\tau = 1.06), which determine the universal power-laws in thermodynamics and response functions in the quantum-critical regime relevant for experiments in heavy-fermion systems and iron pnictides. We present approximate numerical and analytical solutions of Polchinski-Wetterich type flow equations with soft frequency regulators for an effective action of electrons coupled to spin-wave bosons. Performing the renormalization group in frequency -instead of momentum- space allows to track changes of the Fermi surface shape and to capture Landau damping during the flow. The technique is easily generalizable from models retaining only patches of the Fermi surface to full, compact Fermi surfaces.Comment: 46 pages, 13 figures, typos fixed; as accepted to Physical Review

    Actin Filaments Target the Oligomeric Maturation of the Dynamin Gtpase Drp1 to Mitochondrial Fission Sites

    Get PDF
    While the dynamin GTPase Drp1 plays a critical role during mitochondrial fission, mechanisms controlling its recruitment to fission sites are unclear. A current assumption is that cytosolic Drp1 is recruited directly to fission sites immediately prior to fission. Using live-cell microscopy, we find evidence for a different model, progressive maturation of Drp1 oligomers on mitochondria through incorporation of smaller mitochondrially-bound Drp1 units. Maturation of a stable Drp1 oligomer does not forcibly lead to fission. Drp1 oligomers also translocate directionally along mitochondria. Ionomycin, a calcium ionophore, causes rapid mitochondrial accumulation of actin filaments followed by Drp1 accumulation at the fission site, and increases fission rate. Inhibiting actin polymerization, myosin IIA, or the formin INF2 reduces both un-stimulated and ionomycin-induced Drp1 accumulation and mitochondrial fission. Actin filaments bind purified Drp1 and increase GTPase activity in a manner that is synergistic with the mitochondrial protein Mff, suggesting a role for direct Drp1/actin interaction. We propose that Drp1 is in dynamic equilibrium on mitochondria in a fission-independent manner, and that fission factors such as actin filaments target productive oligomerization to fission sites

    Regulation of nuclear-cytoplasmic shuttling and function of Family with sequence similarity 13, member A (Fam13a), by B56-containing PP2As and Akt

    Get PDF
    Recent genome-wide association studies reveal that the FAM13A gene is associated with human lung function and a variety of lung diseases, including chronic obstructive pulmonary disease, asthma, lung cancer, and pulmonary fibrosis. The biological functions of Fam13a, however, have not been studied. In an effort to identify novel substrates of B56-containing PP2As, we found that B56-containing PP2As and Akt act antagonistically to control reversible phosphorylation of Fam13a on Ser-322. We show that Ser-322 phosphorylation acts as a molecular switch to control the subcellular distribution of Fam13a. Fam13a shuttles between the nucleus and cytoplasm. When Ser-322 is phosphorylated by Akt, the binding between Fam13a and 14-3-3 is enhanced, leading to cytoplasmic sequestration of Fam13a. B56-containing PP2As dephosphorylate phospho-Ser-322 and promote nuclear localization of Fam13a. We generated Fam13a-knockout mice. Fam13a-mutant mice are viable and healthy, indicating that Fam13a is dispensable for embryonic development and physiological functions in adult animals. Intriguingly, Fam13a has the ability to activate the Wnt pathway. Although Wnt signaling remains largely normal in Fam13a-knockout lungs, depletion of Fam13a in human lung cancer cells causes an obvious reduction in Wnt signaling activity. Our work provides important clues to elucidating the mechanism by which Fam13a may contribute to human lung diseases

    Mechanism of Neuroprotective Mitochondrial Remodeling by PKA/AKAP1

    Get PDF
    The mitochondrial signaling complex PKA/AKAP1 protects neurons against mitochondrial fragmentation and cell death by phosphorylating and inactivating the mitochondrial fission enzyme Drp1

    Structure of the Protein Phosphatase 2A Holoenzyme

    Get PDF
    SummaryProtein Phosphatase 2A (PP2A) plays an essential role in many aspects of cellular physiology. The PP2A holoenzyme consists of a heterodimeric core enzyme, which comprises a scaffolding subunit and a catalytic subunit, and a variable regulatory subunit. Here we report the crystal structure of the heterotrimeric PP2A holoenzyme involving the regulatory subunit B′/B56/PR61. Surprisingly, the B′/PR61 subunit has a HEAT-like (huntingtin-elongation-A subunit-TOR-like) repeat structure, similar to that of the scaffolding subunit. The regulatory B′/B56/PR61 subunit simultaneously interacts with the catalytic subunit as well as the conserved ridge of the scaffolding subunit. The carboxyterminus of the catalytic subunit recognizes a surface groove at the interface between the B′/B56/PR61 subunit and the scaffolding subunit. Compared to the scaffolding subunit in the PP2A core enzyme, formation of the holoenzyme forces the scaffolding subunit to undergo pronounced conformational rearrangements. This structure reveals significant ramifications for understanding the function and regulation of PP2A

    A Modular Bioplatform Based on a Versatile Supramolecular Multienzyme Complex Directly Attached to Graphene

    Get PDF
    © 2016 American Chemical Society. Developing generic strategies for building adaptable or multifunctional bioplatforms is challenging, in particular because protein immobilization onto surfaces often causes loss of protein function and because multifunctionality usually necessitates specific combinations of heterogeneous elements. Here, we introduce a generic, modular bioplatform construction strategy that uses cage-like supramolecular multienzyme complexes as highly adaptable building blocks immobilized directly and noncovalently on graphene. Thermoplasma acidophilum dihydrolipoyl acyltransferase (E2) supramolecular complexes organize as a monolayer or can be controllably transferred onto graphene, preserving their supramolecular form with specific molecular recognition capability and capacity for engineering multifunctionality. This E2-graphene platform can bind enzymes (here, E1, E2's physiological partner) without loss of enzyme function; in this test case, E1 catalytic activity was detected on E2-graphene over 6 orders of magnitude in substrate concentration. The E2-graphene platform can be multiplexed via patterned cotransfer of differently modified E2 complexes. As the E2 complexes are robust and highly customizable, E2-graphene is a platform onto which multiple functionalities can be built

    Exploring the functional interaction between POSH and ALIX and the relevance to HIV-1 release

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The ALG2-interacting protein X (ALIX)/AIP1 is an adaptor protein with multiple functions in intracellular protein trafficking that plays a central role in the biogenesis of enveloped viruses. The ubiquitin E3-ligase POSH (plenty of SH3) augments HIV-1 egress by facilitating the transport of Gag to the cell membrane. Recently, it was reported, that POSH interacts with ALIX and thereby enhances ALIX mediated phenotypes in <it>Drosophila</it>.</p> <p>Results</p> <p>In this study we identified ALIX as a POSH ubiquitination substrate in human cells: POSH induces the ubiquitination of ALIX that is modified on several lysine residues <it>in vivo </it>and <it>in vitro</it>. This ubiquitination does not destabilize ALIX, suggesting a regulatory function. As it is well established that ALIX rescues virus release of L-domain mutant HIV-1, HIV-1Δ<sub>PTAP</sub>, we demonstrated that wild type POSH, but not an ubiquitination inactive RING finger mutant (POSH<sup>V14A</sup>), substantially enhances ALIX-mediated release of infectious virions derived from HIV-1Δ<sub>PTAP </sub>L-domain mutant (YPX<sub>n</sub>L-dependent HIV-1). In further agreement with the idea of a cooperative function of POSH and ALIX, mutating the YPX<sub>n</sub>L-ALIX binding site in Gag completely abrogated augmentation of virus release by overexpression of POSH. However, the effect of the POSH-mediated ubiquitination appears to be auxiliary, but not necessary, as silencing of POSH by RNAi does not disturb ALIX-augmentation of virus release.</p> <p>Conclusion</p> <p>Thus, the cumulative results identified ALIX as an ubiquitination substrate of POSH and indicate that POSH and ALIX cooperate to facilitate efficient virus release. However, while ALIX is obligatory for the release of YPX<sub>n</sub>L-dependent HIV-1, POSH, albeit rate-limiting, may be functionally interchangeable.</p

    N-acetyl-b-D-glucosaminidase: A potential cardiorenal biomarker with a relevant impact on ICD shock therapies and mortality

    Get PDF
    Aims Chronic heart failure may lead to chronic kidney disease. Previous studies suggest tubular markers N-acetyl-b-D-glucosaminidase (NAG) and Kidney-injury-molecule-1 (KIM-1) as potential markers for the cardiorenal syndrome (CRS). The prognostic value of NAG and KIM-1 regarding implantable cardioverter defibrillator (ICD) shock therapies is unknown. Methods We included 314 patients with an ICD and collected plasma and urine samples. Urine-values of NAG and KIM-1 got related to urinary creatinine. Outcomes of interest were sustained adequate shock therapies and a combined endpoint of all-cause mortality, rehospitalisation due to congestive heart failure and adequate shock therapies. Follow up time was 32 months (IQR 6-35 months). Results KIM-1 and NAG were positively correlated with NT-proBNP (KIM-1:r= .34,P < .001; NAG:r= .47,P < .001). NAG was significantly elevated in patients with primary prevention compared with secondary prevention ICD indication (P= .003). According to Kaplan Meier analysis, NAG as well as NT-proBNP were significant predictors for adequate ICD shock therapies and for the combined endpoint (eachP < .001). Elevated KIM-1 showed no significant differences (eachP= n.s.). In multivariate cox regression analysis, NAG as well as NT-proBNP were both independent predictors for adequate ICD shock therapies as well as the combined endpoint, beside ejection fraction <35% (eachP < .05). Diabetes, primary prevention ICD indication, coronary artery disease, eGFR and age were no significant predictors for both endpoints (eachP= n.s.). Conclusion Similar to NT-proBNP, NAG showed promising value for overall prognostication in ICD patients. Especially, NAG seems to incorporate an additional prognostic value regarding occurrence of ICD shock therapies
    • …
    corecore