32 research outputs found

    Ultrafast coherent control and multidimensional spectroscopy on the nanoscale

    Get PDF
    Strüber C. Ultrafast coherent control and multidimensional spectroscopy on the nanoscale. Bielefeld: Universität Bielefeld; 2014.The combination of femtosecond polarization pulse shaping and time-resolved photoemission electron microscopy (TR-PEEM) enables the ultrafast coherent control of optical near-fields at nanostructured surfaces. The optical excitation is confined at locations separated by sub-wavelength spatial distance as well as femtosecond temporal delay providing the possibility of ultrafast spatiotemporal spectroscopy on the nanoscale. 2D nanoscopy is a nonlinear spectroscopy technique based on coherent optical 2D spectroscopy. Collinear sequences of ultrashort laser pulses with variable relative delays and phases transfer the local electron distribution into excited electronic states which is finally leading to localized electron emission. The local photoemission yield is detected via TR-PEEM permitting the retrieval of local spectroscopic information via phase cycling and Fourier transformation of the pulse delays. Ultrafast coherent control and 2D nanoscopy is applied to investigate artificially nanostructured devices as well as corrugated silver surfaces, which are relevant for SERS, and localization of photonic modes in amorphous silicon thin-film solar cells

    Optical inter-site spin transfer probed by energy and spin-resolved transient absorption spectroscopy

    Get PDF
    Optically driven spin transport is the fastest and most efficient process to manipulate macroscopic magnetization as it does not rely on secondary mechanisms to dissipate angular momentum. In the present work, we show that such an optical inter-site spin transfer (OISTR) from Pt to Co emerges as a dominant mechanism governing the ultrafast magnetization dynamics of a CoPt alloy. To demonstrate this, we perform a joint theoretical and experimental investigation to determine the transient changes of the helicity dependent absorption in the extreme ultraviolet spectral range. We show that the helicity dependent absorption is directly related to changes of the transient spin-split density of states, allowing us to link the origin of OISTR to the available minority states above the Fermi level. This makes OISTR a general phenomenon in optical manipulation of multi-component magnetic systems. Optically driven spin transfer is the fastest process to manipulate magnetism. Here, the authors show that this process emerges as the dominant mechanism in femtosecond spin dynamics enabling to the engineering of functional magnetic systems for future all optical technologies

    Low-Energy Electron Emission in the Strong-Field Ionization of Rare Gas Clusters

    Get PDF
    Clusters and nanoparticles have been widely investigated to determine how plasmonic near fields influence the strong-field induced energetic electron emission from finite systems. We focus on the contrary, i.e., the slow electrons, and discuss a hitherto unidentified low-energy structure (LES) in the photoemission spectra of rare gas clusters in intense near-infrared laser pulses. For Ar and Kr clusters we find, besides field-driven fast electrons, a robust and nearly isotropic emission of electrons with <4  eV kinetic energies that dominates the total yield. Molecular dynamics simulations reveal a correlated few-body decay process involving quasifree electrons and multiply excited ions in the nonequilibrium nanoplasma that results in a dominant LES feature. Our results indicate that the LES emission occurs after significant nanoplasma expansion, and that it is a generic phenomenon in intense laser nanoparticle interactions, which is likely to influence the formation of highly charged ions

    The COMIX polarimeter: a compact device for XUV polarization analysis

    Get PDF
    We report on the characterization of a novel extreme-ultraviolet polarimeter based on conical mirrors to simultaneously detect all the components of the electric field vector for extreme-ultraviolet radiation in the 45–90 eV energy range. The device has been characterized using a variable polarization source at the Elettra synchrotron, showing good performance in the ability to determine the radiation polarization. Furthermore, as a possible application of the device, Faraday spectroscopy and time-resolved experiments have been performed at the Fe M2,3-edge on an FeGd ferrimagnetic thin film using the FERMI free-electron laser source. The instrument is shown to be able to detect the small angular variation induced by an optical external stimulus on the polarization state of the light after interaction with magnetic thin film, making the device an appealing tool for magnetization dynamics research

    Angular momentum–induced delays in solid-state photoemission enhanced by intra-atomic interactions

    Get PDF
    Attosecond time-resolved photoemission spectroscopy reveals that photoemission from solids is not yet fully understood. The relative emission delays between four photoemission channels measured for the van der Waals crystal tungsten diselenide (WSe) can only be explained by accounting for both propagation and intra-atomic delays. The intra-atomic delay depends on the angular momentum of the initial localized state and is determined by intra-atomic interactions. For the studied case of WSe, the photoemission events are time ordered with rising initial-state angular momentum. Including intra-atomic electron-electron interaction and angular momentum of the initial localized state yields excellent agreement between theory and experiment. This has required a revision of existing models for solid-state photoemission, and thus, attosecond time-resolved photoemission from solids provides important benchmarks for improved future photoemission models.This work was supported by the German Research Foundation (DFG) within the Collaborative Research Center (SFB) 613 (F.S., P.B., W.P., and U.H.), the Priority Programs SPP 1931 (C.S., M.H., and W.P.), and SPP 1840 (St.F., S.N., and W.P.); the Basque Government (grant IT-756-13 UPV/EHU) (V.M.S., E.E.K., R.D.M., P.M.E., and A.K.K.); and the Spanish Ministerio de Economía y Competitividad (grants FIS2016-76617-P and FIS2016-76471-P) (V.M.S., E.E.K., R.D.M., P.M.E., and A.K.K.) and Fondo Europeo de Desarrollo Regional (FEDER) (CTQ2016- 80375-P) (M.T.-S.). N.M.K. acknowledges hospitality and financial support from the theory group in cooperation with the small quantum systems (SQS) research group of European XFEL.Peer Reviewe

    Enhanced light absorption in nanotextured amorphous thin-film silicon caused by femtosecond-laser materials processing

    No full text
    Differt D, Soleymanzadeh B, Lükermann F, Strüber C, Pfeiffer W, Stiebig H. Enhanced light absorption in nanotextured amorphous thin-film silicon caused by femtosecond-laser materials processing. Solar Energy Materials and Solar Cells. 2015;135:72-77.Efficient thin-film solar cells balance the reduced absorption occurring in thin absorber layers by means of various photon management strategies that often involve randomly nanotextured interfaces. We report on broadband absorption enhancement in nanotextured amorphous silicon processed by femtosecond laser materials processing. As identified by micro-Raman spectroscopy and surface profilometry, the absorption of a single femtosecond amplifier laser pulse (30 fs, 795 nm, 75 mJ cm(-2)) creates a thin nanotextured micro-crystalline surface layer. Optical microscopy in transmission and reflection geometry reveals a broadband absorption enhancement in the visual spectrum range for the nanotextured area. Scattered light spectroscopy in combination with spectral interferometry indicates that light trapping for about 100 fs is achieved in the femtosecond-laser processed amorphous silicon area and thus is responsible for the observed enhanced absorption and locally enhanced Raman yields. Thus fs-laser materials processing offers an interesting pathway towards advanced photon management in amorphous silicon based thin-film solar cells. (C) 2014 Elsevier B.V. All rights reserved

    Application concepts for ultrafast laser-induced skyrmion creation and annihilation

    Get PDF
    Magnetic skyrmions can be created and annihilated in ferromagnetic multilayers using single femtosecond infrared laser pulses above a material-dependent fluence threshold. From the perspective of applications, optical control of skyrmions offers a route to a faster and, potentially, more energy-efficient new class of information-technology devices. Here, we investigate laser-induced skyrmion generation in two different materials, mapping out the dependence of the process on the applied field and the laser fluence. We observe that sample properties like strength of the Dzyaloshinskii–Moriya interaction and pinning do not considerably influence the initial step of optical creation. In contrast, the number of skyrmions created can be directly and robustly controlled via the applied field and the laser fluence. Based on our findings, we propose concepts for applications, such as all-optical writing and deletion, an ultrafast skyrmion reshuffling device for probabilistic computing, and a combined optical and spin–orbit torque-controlled racetrack
    corecore