153 research outputs found

    Tunneling between edge states in a quantum spin Hall system

    Full text link
    We analyze a quantum spin Hall (QSH) device with a point contact connecting two of its edges. The contact supports a net spin tunneling current that can be probed experimentally via a two-terminal resistance measurement. We find that the low-bias tunneling current and the differential conductance exhibit scaling with voltage and temperature that depend nonlinearly on the strength of the electron-electron interaction.Comment: 4 pages, 3 figures; published versio

    Magnetic-field switchable metal-insulator transitions in a quasihelical conductor

    Full text link
    We study Anderson localization in disordered helical conductors that are obtained from one-dimensional conductors with spin-orbit interaction and a magnetic field, or from equivalent systems. We call such conductors "quasihelical" because the spins of the counterpropagating modes are not perfectly antiparallel and have a small spin-wave-function overlap that is tunable by the magnetic field. Due to the overlap, disorder backscattering is possible and allows a localization transition. A conductor can pass through two localization transitions with increasing field, one from the conventionally localized system to the quasihelical conductor (with localization length exceeding the system length), and one at a higher field again to a localized state, due now, however, to backscattering below the magnetic-field induced pseudogap. We investigate these transitions using a unified two-step renormalization group approachB.B. acknowledges the support by the EU-FP7 Project SE2ND [271554]. A.S. acknowledges the support by the Swedish research council,Grant No. 621-2011-3942. G.I.J. acknowledges the support by the Georgian NSF Grant No. ST09/4-447 and by the SCOPES Grant No. IZ73Z0-12805

    Quantification of urea-spray non-uniformity effects on the H2-assisted NO reduction and NH3 slip over an Ag/Al2O3 catalyst

    Get PDF
    Selective catalytic reduction of nitrogen oxides (NOx) with ammonia (NH3-SCR) is an efficient technology for lean NOx removal in automotive applications. In the current work, a kinetic model for hydrogen-assisted NH3-SCR over a silver-alumina (Ag/Al2O3) monolith catalyst is adapted to the corresponding experimental results. The degree of non-uniformity in the NH3 dose to individual catalyst channels during operation of a urea-SCR system is also investigated and the NH3 dose probability distribution functions are derived. The effects of NH3 non-uniformity on the NO conversion and NH3 slip are studied over an otherwise optimal Ag/Al2O3 system. Above the stoichiometric point, the NH3 slip is shown to increase almost linearly with increasing NH3 dosage. Channels that receive significantly lower NH3 dose than the stoichiometric one exhibit low NO conversion, whereas there is no discernable increase in the NO conversion above an NH3 dose four times the average. These results highlight the importance of the interaction between the design of the NH3 dosing system and the performance of the catalytic system

    Edge Dynamics in a Quantum Spin Hall State: Effects from Rashba Spin-Orbit Interaction

    Full text link
    We analyze the dynamics of the helical edge modes of a quantum spin Hall state in the presence of a spatially non-uniform Rashba spin-orbit (SO) interaction. A randomly fluctuating Rashba SO coupling is found to open a scattering channel which causes localization of the edge modes for a weakly screened electron-electron (e-e) interaction. A periodic modulation of the SO coupling, with a wave number commensurate with the Fermi momentum, makes the edge insulating already at intermediate strengths of the e-e interaction. We discuss implications for experiments on edge state transport in a HgTe quantum well.Comment: 4 pages, 2 figures; published versio

    Site-dependent N uptake from N-form mixtures by arctic plants, soil microbes and ectomycorrhizal fungi

    Get PDF
    Abstract in Undetermined Soil microbes constitute an important control on nitrogen (N) turnover and retention in arctic ecosystems where N availability is the main constraint on primary production. Ectomycorrhizal (ECM) symbioses may facilitate plant competition for the specific N pools available in various arctic ecosystems. We report here our study on the N uptake patterns of coexisting plants and microbes at two tundra sites with contrasting dominance of the circumpolar ECM shrub Betula nana. We added equimolar mixtures of glycine-N, NH4+-N and NO3--N, with one N form labelled with N-15 at a time, and in the case of glycine, also labelled with C-13, either directly to the soil or to ECM fungal ingrowth bags. After 2 days, the vegetation contained 5.6, 7.7 and 9.1% (heath tundra) and 7.1, 14.3 and 12.5% (shrub tundra) of the glycine-, NH4+- and NO3--N-15, respectively, recovered in the plant-soil system, and the major part of N-15 in the soil was immobilized by microbes (chloroform fumigation-extraction). In the subsequent 24 days, microbial N turnover transferred about half of the immobilized N-15 to the non-extractable soil organic N pool, demonstrating that soil microbes played a major role in N turnover and retention in both tundra types. The ECM mycelial communities at the two tundras differed in N-form preferences, with a higher contribution of glycine to total N uptake at the heath tundra; however, the ECM mycelial communities at both sites strongly discriminated against NO3-. Betula nana did not directly reflect ECM mycelial N uptake, and we conclude that N uptake by ECM plants is modulated by the N uptake patterns of both fungal and plant components of the symbiosis and by competitive interactions in the soil. Our field study furthermore showed that intact free amino acids are potentially important N sources for arctic ECM fungi and plants as well as for soil microorganisms

    Plant and microbial uptake and allocation of organic and inorganic nitrogen related to plant growth forms and soil conditions at two subarctic tundra sites in Sweden

    Get PDF
    In order to follow the uptake and allocation of N in different plant functional types and microbes in two tundra ecosystems differing in nutrient availability, we performed a 15N-labeling experiment with three N forms and followed the partitioning of 15N label among plants, microorganisms and soil organic matter. At both sites the deciduous dwarf shrub Betula nana and the evergreen Empetrum hermaphroditum absorbed added 15N at rates in the order: NH4+ > NO3− > glycine, in contrast to the graminoid Carex species which took up added 15N at rates in the order NO3− > NH4+ > glycine. Carex transported a high proportion of 15N to aboveground parts, whereas the dwarf shrubs allocated most 15N to underground storage. Enhanced 13C in Betula nana roots represents the first field evidence of uptake of intact glycine by this important circumpolar plant. Plant and microbial uptake of label was complementary as plants took up more inorganic than organic N, while microbes preferred organic N. Microbes initially took up a large part of the added label, but over the following four weeks microbial 15N decreased by 50% and most 15N was recovered in soil organic matter, while a smaller but slowly increasing proportion was retained in plant biomass

    Electrical control of the Kondo effect in a helical edge liquid

    Full text link
    Magnetic impurities affect the transport properties of the helical edge states of quantum spin Hall insulators by causing single-electron backscattering. We study such a system in the presence of a Rashba spin-orbit interaction induced by an external electric field, showing that this can be used to control the Kondo temperature, as well as the correction to the conductance due to the impurity. Surprisingly, for a strongly anisotropic electron-impurity spin exchange, Kondo screening may get obstructed by the presence of a non-collinear spin interaction mediated by the Rashba coupling. This challenges the expectation that the Kondo effect is stable against time-reversal invariant perturbations.Comment: 7 pages, 2 figures. Expression for the current operator corrected. (Conclusions unaffected.) Erratum to be publishe

    Investigation of interference from canine anti-mouse antibodies in hormone immunoassays

    Get PDF
    Background: Canine anti-mouse antibodies are a potential source of immunoassay interference, but erroneous immunoassay results are not always easily identifiable. Anti-Mullerian hormone (AMH) is a marker for the presence of gonads in dogs, but elevated AMH concentrations in neutered dogs could also be caused by antibody interference. For other assays, a discrepant result obtained after antibody precipitation might indicate antibody interference. Objectives: We aimed to evaluate if canine anti-mouse antibodies are a source of erroneous results in the AMH assay and if antibody precipitation with polyethylene glycol (PEG) is a useful tool for detecting antibody interference in a variety of immunoassays used in the veterinary clinical laboratory. Methods: Twenty-nine positive and 25 negative samples for anti-mouse antibodies were analyzed for AMH, canine total thyroxine (TT4), canine thyroid-stimulating hormone (TSH) and progesterone before and after treatment with PEG. Results that differed by more than four SDs from the intra-assay coefficients of variation were considered discrepant. Elevated AMH concentrations in neutered dogs with anti-mouse antibodies and no visible gonads present were considered evidence of interference. Results: Evidence of antibody interference was found in two samples analyzed for AMH. The presence of anti-mouse antibodies did not lead to a higher proportion of discrepant results after PEG treatment for any of the immunoassays. The overall incidence of discrepant results for healthy controls was very high (73%). Conclusions Canine anti-mouse antibodies are a source of erroneous AMH results. Antibody precipitation with PEG is not a useful tool for detecting interference caused by such antibodies

    Cardiac troponin I in healthy Norwegian Forest Cat, Birman and domestic shorthair cats, and in cats with hypertrophic cardiomyopathy

    Get PDF
    Objectives The aims of this study were to assess the potential associations between the serum cardiac troponin I (cTnI) concentration in healthy cats and feline characteristics, systolic blood pressure, heart rate (HR), echocardiographic measurements and storage time; and to compare cTnI concentrations in healthy cats with concentrations in cats with hypertrophic cardiomyopathy (HCM), with or without left atrial enlargement (LAE) and in cats with HCM, to assess potential associations between cTnI concentration and echocardiographic variables. Methods Cardiac TnI was analysed using an Abbott ARCHITECT ci16200 analyser in serum from prospectively included healthy Norwegian Forest Cat (NF; n = 33), Birman (n = 33) and domestic shorthair (DSH; n = 30) cats, and from 39 cats with HCM, with or without LAE. Results In healthy cats, higher cTnI concentrations were found in Birman cats than in NF cats (P = 0.014) and in neutered male cats than in intact females (P = 0.032). Cardiac TnI was positively associated with HR (P <0.0001). In cats with HCM, cTnI concentration was positively associated with left ventricular wall thickness and with left atrial-to-aortic root ratio (all P <= 0.010). Cats with HCM had higher cTnI concentrations than healthy cats, and cTnI concentrations were higher in cats with HCM and LAE than in those with HCM without LAE (all P = 0.0003). Conclusions and relevance Breed and sex may affect serum cTnI concentrations in healthy cats. The cTnI concentration increased with increasing severity of HCM
    • …
    corecore