45 research outputs found

    A whole-cell biosensor for the detection of gold

    Get PDF
    Geochemical exploration for gold (Au) is becoming increasingly important to the mining industry. Current processes for Au analyses require sampling materials to be taken from often remote localities. Samples are then transported to a laboratory equipped with suitable analytical facilities, such as Inductively Coupled Plasma-Mass Spectrometry (ICP-MS) or Instrumental Neutron Activation Analysis (INAA). Determining the concentration of Au in samples may take several weeks, leading to long delays in exploration campaigns. Hence, a method for the on-site analysis of Au, such as a biosensor, will greatly benefit the exploration industry. The golTSB genes from Salmonella enterica serovar typhimurium are selectively induced by Au(I/III)-complexes. In the present study, the golTSB operon with a reporter gene, lacZ, was introduced into Escherichia coli. The induction of golTSB::lacZ with Au(I/III)-complexes was tested using a colorimetric ÎČ-galactosidase and an electrochemical assay. Measurements of the ÎČ-galactosidase activity for concentrations of both Au(I)- and Au(III)-complexes ranging from 0.1 to 5 ”M (equivalent to 20 to 1000 ng g⁻Âč or parts-per-billion (ppb)) were accurately quantified. When testing the ability of the biosensor to detect Au(I/III)-complexes(aq) in the presence of other metal ions (Ag(I), Cu(II), Fe(III), Ni(II), Co(II), Zn, As(III), Pb(II), Sb(III) or Bi(III)), cross-reactivity was observed, i.e. the amount of Au measured was either under- or over-estimated. To assess if the biosensor would work with natural samples, soils with different physiochemical properties were spiked with Au-complexes. Subsequently, a selective extraction using 1 M thiosulfate was applied to extract the Au. The results showed that Au could be measured in these extracts with the same accuracy as ICP-MS (P<0.05). This demonstrates that by combining selective extraction with the biosensor system the concentration of Au can be accurately measured, down to a quantification limit of 20 ppb (0.1 ”M) and a detection limit of 2 ppb (0.01 ”M).Carla M. Zammit, Davide Quaranta, Shane Gibson, Anita J. Zaitouna, Christine Ta, JoĂ«l Brugger, Rebecca Y. Lai, Gregor Grass, Frank Reit

    The Two-Component Signal Transduction System CopRS of Corynebacterium glutamicum Is Required for Adaptation to Copper-Excess Stress

    Get PDF
    Copper is an essential cofactor for many enzymes but at high concentrations it is toxic for the cell. Copper ion concentrations ≄50 ”M inhibited growth of Corynebacterium glutamicum. The transcriptional response to 20 ”M Cu2+ was studied using DNA microarrays and revealed 20 genes that showed a ≄ 3-fold increased mRNA level, including cg3281-cg3289. Several genes in this genomic region code for proteins presumably involved in the adaption to copper-induced stress, e. g. a multicopper oxidase (CopO) and a copper-transport ATPase (CopB). In addition, this region includes the copRS genes (previously named cgtRS9) which encode a two-component signal transduction system composed of the histidine kinase CopS and the response regulator CopR. Deletion of the copRS genes increased the sensitivity of C. glutamicum towards copper ions, but not to other heavy metal ions. Using comparative transcriptome analysis of the ΔcopRS mutant and the wild type in combination with electrophoretic mobility shift assays and reporter gene studies the CopR regulon and the DNA-binding motif of CopR were identified. Evidence was obtained that CopR binds only to the intergenic region between cg3285 (copR) and cg3286 in the genome of C. glutamicum and activates expression of the divergently oriented gene clusters cg3285-cg3281 and cg3286-cg3289. Altogether, our data suggest that CopRS is the key regulatory system in C. glutamicum for the extracytoplasmic sensing of elevated copper ion concentrations and for induction of a set of genes capable of diminishing copper stress

    An understanding of intervertebral disc development, maturation and cell phenotype provides clues to direct cell-based tissue regeneration therapies for disc degeneration

    Get PDF
    Cell-based regenerative medicine therapies have been proposed for repairing the degenerated intervertebral disc (a major cause of back pain). However, for this approach to be successful, it is essential to characterise the phenotype of its native cells to guarantee that implanted cells differentiate and maintain the correct phenotype to ensure appropriate cell and tissue function. While recent studies have increased our knowledge of the human nucleus pulposus (NP) cell phenotype, their ontogeny is still unclear. The expression of notochordal markers by a subpopulation of adult NP cells suggests that, contrary to previous reports, notochord-derived cells are retained in the adult NP, possibly coexisting with a second population of cells originating from the annulus fibrosus or endplate. It is not known, however, how these two cell populations interact and their specific role(s) in disc homeostasis and disease. In particular, notochordal cells are proposed to display both anabolic and protective roles; therefore, they may be the ideal cells to repair the degenerate disc. Thus, understanding the ontogeny of the adult NP cells is paramount, as it will inform the medical and scientific communities as to the ideal phenotype to implant into the degenerate disc and the specific pathways involved in stem cell differentiation towards such a phenotype. © 2014 The Author(s)

    Unexpectedly decreased plasma cytokines in patients with chronic back pain

    No full text
    Simona Capossela,1 David Pavlicek,1 Alessandro Bertolo,1 Gunther Landmann,2 Jivko V Stoyanov1 1Swiss Paraplegic Research, Nottwil, Switzerland; 2Centre for Pain Medicine, Swiss Paraplegic Centre, Nottwil, Switzerland Introduction: Chronic back pain is one of the most important socioeconomic problems that affects the global population. Elevated levels of inflammatory mediators, such as cytokines, have been correlated with pain, but their role in chronic back pain remains unclear. The effectiveness of anti-inflammatory drugs seems to be limited for chronic back pain. The authors wanted to investigate the levels of inflammatory mediators in long-term medically treated patients with persistent chronic back pain. Methods: Cytokine plasma levels of patients with chronic back pain (n=23), compared to pain-free healthy controls (n=30), were investigated by immunoassay. Patients with chronic back pain were exposed to long-term conservative medical therapy with physiotherapy and anti-inflammatories, also combined with antidepressants and/or muscle-relaxants. Results: The patients with chronic back pain expressed lower levels of the chemokines MCP1, CCL5, and CXCL6 compared to pain-free healthy controls. Significantly lower concentrations of the anti-inflammatory cytokines, interleukin (IL)-4 and granulocyte-colony stimulating factor were also found. Interestingly, levels of proinflammatory cytokines (IL-2, IL-6, IL-1&beta;, tumor necrosis factor alpha), IL-10, granulocyte-macrophage colony-stimulating factor, and stromal cell-derived factor 1 alpha showed no significant differences between both groups. Conclusion: This decrease of inflammatory mediators in medically treated patients with chronic back pain is of unclear origin and might be either a long-term side effect of medical therapy or related to chronic pain. Further longitudinal research is necessary to elucidate the underlying cause of these findings. Keywords: chronic pain, back pain, inflammation, cytokine, chemokin
    corecore