115 research outputs found

    Non-destructive assay of nuclear waste containers using muon scattering tomography in the Horizon2020 CHANCE project

    Get PDF
    Methods for the non-destructive assay of nuclear waste drums are of great importance to the nuclear waste management community, especially where loss in continuity of knowledge about the content of drums happened or chemical processes altering the contents of the drums may occur. Muon scattering tomography has been shown to be a promising technique for the non-destructive assay of nuclear waste drums in a safe way. By measuring tracks of muons entering and leaving the probed sample and extracting scattering angles from the tracks, it is possible to draw conclusions about the contents of the sample and its spatial arrangement. Within the CHANCE project, a newly built large-scale mobile detector system for scanning and imaging the contents of nuclear waste drums using atmospheric muons is currently undergoing commissioning

    Mouse model of carbon tetrachloride induced liver fibrosis: Histopathological changes and expression of CD133 and epidermal growth factor

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In the setting of chronic liver injury in humans, epidermal growth factor (EGF) and EGF receptor (EGFR) are up-regulated and have been proposed to have vital roles in both liver regeneration and development of hepatocellular carcinoma (HCC). Chronic liver injury also leads to hepatic stellate cell (HSC) differentiation and a novel subpopulation of HSCs which express CD133 and exhibit properties of progenitor cells has been described in rats. The carbon tetrachloride (CCl<sub>4</sub>)-induced mouse model has been historically relied upon to study liver injury and regeneration. We exposed mice to CCl<sub>4 </sub>to assess whether EGF and CD133+ HSCs are up-regulated in chronically injured liver.</p> <p>Methods</p> <p>CCl<sub>4 </sub>in olive oil was administered to strain A/J mice three times per week by oral gavage.</p> <p>Results</p> <p>Multiple well-differentiated HCCs were found in all livers after 15 weeks of CCl<sub>4 </sub>treatment. Notably, HCCs developed within the setting of fibrosis and not cirrhosis. CD133 was dramatically up-regulated after CCl<sub>4 </sub>treatment, and increased expression of desmin and glial fibrillary acidic protein, representative markers of HSCs, was also observed. EGF expression significantly decreased, contrary to observations in humans, whereas the expression of amphiregulin, another EGFR ligand, was significantly increased.</p> <p>Conclusions</p> <p>Species-specific differences exist with respect to the histopathological and molecular pathogenesis of chronic liver disease. CCl<sub>4</sub>-induced chronic liver injury in A/J mice has important differences compared to human cirrhosis leading to HCC.</p

    Caenorhabditis elegans N-glycan Core β-galactoside Confers Sensitivity towards Nematotoxic Fungal Galectin CGL2

    Get PDF
    The physiological role of fungal galectins has remained elusive. Here, we show that feeding of a mushroom galectin, Coprinopsis cinerea CGL2, to Caenorhabditis elegans inhibited development and reproduction and ultimately resulted in killing of this nematode. The lack of toxicity of a carbohydrate-binding defective CGL2 variant and the resistance of a C. elegans mutant defective in GDP-fucose biosynthesis suggested that CGL2-mediated nematotoxicity depends on the interaction between the galectin and a fucose-containing glycoconjugate. A screen for CGL2-resistant worm mutants identified this glycoconjugate as a Galβ1,4Fucα1,6 modification of C. elegans N-glycan cores. Analysis of N-glycan structures in wild type and CGL2-resistant nematodes confirmed this finding and allowed the identification of a novel putative glycosyltransferase required for the biosynthesis of this glycoepitope. The X-ray crystal structure of a complex between CGL2 and the Galβ1,4Fucα1,6GlcNAc trisaccharide at 1.5 Å resolution revealed the biophysical basis for this interaction. Our results suggest that fungal galectins play a role in the defense of fungi against predators by binding to specific glycoconjugates of these organisms

    Crystal structure of nucleotide-free dynamin

    Get PDF
    Dynamin is a mechanochemical GTPase that oligomerizes around the neck of clathrin-coated pits and catalyses vesicle scission in a GTP-hydrolysis-dependent manner. The molecular details of oligomerization and the mechanism of the mechanochemical coupling are currently unknown. Here we present the crystal structure of human dynamin 1 in the nucleotide-free state with a four-domain architecture comprising the GTPase domain, the bundle signalling element, the stalk and the pleckstrin homology domain. Dynamin 1 oligomerized in the crystals via the stalks, which assemble in a criss-cross fashion. The stalks further interact via conserved surfaces with the pleckstrin homology domain and the bundle signalling element of the neighbouring dynamin molecule. This intricate domain interaction rationalizes a number of disease-related mutations in dynamin 2 and suggests a structural model for the mechanochemical coupling that reconciles previous models of dynamin function

    Glycobiology of cell death: when glycans and lectins govern cell fate

    Get PDF
    Although one typically thinks of carbohydrates as associated with cell growth and viability, glycosylation also has an integral role in many processes leading to cell death. Glycans, either alone or complexed with glycan-binding proteins, can deliver intracellular signals or control extracellular processes that promote initiation, execution and resolution of cell death programs. Herein, we review the role of glycans and glycan-binding proteins as essential components of the cell death machinery during physiologic and pathologic settings.Fil: Lichtenstein, Rachel. Ben-Gurion University of the Negev. Faculty of Engineering. Department of Biotechnology Engineering; IsraelFil: Rabinovich, Gabriel Adrian. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental (i); Argentina. Universidad de Buenos Aires. Facultad de Cs.exactas y Naturales. Departamento de Quimica Biologica; Argentin

    Ectopic synaptic ribbons in dendrites of mouse retinal ON- and OFF-bipolar cells

    Get PDF
    The ectopic distribution of synaptic ribbons in dendrites of mouse retinal bipolar cells was examined by using genetic ablation of metabotropic glutamate receptor subtype 6 (mGluR6), electron microscopy, and immunocytochemistry. Ectopic ribbons were observed in dendrites of rod and ON-cone bipolar cells in the mGluR6-deficient mouse but not in those of wild-type mice. The number of rod spherules facing the ectopic ribbons in mGluR6-deficient rod bipolar dendrites increased gradually during early growth and reached a plateau level of about 20% at 12 weeks. These ectopic ribbons were immunopositive for RIBEYE, a ribbon-specific protein, but the associated vesicles were immunonegative for synaptophysin, a synaptic-vesicle-specific protein. The presence of ectopic ribbons was correlated with an increase in the roundness of the invaginating dendrites of the rod bipolar cells. We further confirmed ectopic ribbons in dendrites of OFF-cone bipolar cells in wild-type retinas. Of the four types of OFF-cone bipolar cells (T1–T4), only the T2-type, which had a greater number of synaptic ribbons at the axon terminal and a thicker axon cylinder than the other types, had ectopic ribbons. Light-adapted experiments revealed that, in wild-type mice under enhanced-light adaptation (considered similar to the mGluR6-deficient state), the roundness in the invaginating dendrites and axon terminals of rod bipolar cells increased, but no ectopic ribbons were detected. Based on these findings and known mechanisms for neurotransmitter release and protein trafficking, the possible mechanisms underlying the ectopic ribbons are discussed on the basis of intracellular transport for the replenishment of synaptic proteins

    Structure of photosynthetic LH1-RC supercomplex at 1.9 Å resolution

    Get PDF
    Light-harvesting complex 1 (LH1) and the reaction centre (RC) form a membrane-protein supercomplex that performs the primary reactions of photosynthesis in purple photosynthetic bacteria. The structure of the LH1-RC complex can provide information on the arrangement of protein subunits and cofactors; however, so far it has been resolved only at a relatively low resolution. Here we report the crystal structure of the calcium-ion-bound LH1-RC supercomplex of Thermochromatium tepidum at a resolution of 1.9 Å. This atomic-resolution structure revealed several new features about the organization of protein subunits and cofactors. We describe the loop regions of RC in their intact states, the interaction of these loop regions with the LH1 subunits, the exchange route for the bound quinone QB with free quinone molecules, the transport of free quinones between the inside and outside of the LH1 ring structure, and the detailed calcium-ion-binding environment. This structure provides a solid basis for the detailed examination of the light reactions that occur during bacterial photosynthesis

    Sensitivity of the T2K accelerator-based neutrino experiment with an Extended run to 20×102120\times10^{21} POT

    Get PDF
    18 pages, 4 figures18 pages, 4 figures18 pages, 4 figures18 pages, 4 figures18 pages, 4 figuresRecent measurements at the T2K experiment indicate that CP violation in neutrino mixing may be observed in the future by long-baseline neutrino oscillation experiments. We explore the physics program of an extension to the currently approved T2K running of 7.8×10217.8\times 10^{21} protons-on-target to 20×102120\times 10^{21} protons-on-target,aiming at initial observation of CP violation with 3σ\,\sigma or higher significance for the case of maximum CP violation. With accelerator and beam line upgrades, as well as analysis improvements, this program would occur before the next generation of long-baseline neutrino oscillation experiments that are expected to start operation in 2026.We acknowledge the support of MEXT, Japan; NSERC (Grant No. SAPPJ-2014-00031), NRC and CFI, Canada; CEA and CNRS/IN2P3, France; DFG, Germany; INFN, Italy; National Science Centre (NCN), Poland; RSF, RFBR and MES, Russia; MINECO and ERDF funds, Spain; SNSF and SERI, Switzerland; STFC, UK; and DOE, USA. We also thank CERN for the UA1/NOMAD magnet, DESY for the HERA-B magnet mover system, NII for SINET4, the WestGrid and SciNet consortia in Compute Canada, and GridPP in the United Kingdom. In addition, participation of individual researchers and institutions has been further supported by funds from ERC (FP7), H2020 Grant No. RISE-GA644294-JENNIFER, EU; JSPS, Japan; Royal Society, UK; and the DOE Early Career program, USA. CNRS/IN2P3: Centre National de la Recherche ScientifiqueInstitut National de Physique Nucleaire et de Physique des Particules RSF: Russian Science Foundation MES: Ministry of Education and Science, Russia ERDF: European Regional Development Fund SNSF: Swiss National Science Foundation SER (should be SERI): State Secretariat for Education, Research and Innovatio

    Proposal for an Extended Run of T2K to 20×102120\times10^{21} POT

    Get PDF
    68 pages, 31 figures68 pages, 31 figures68 pages, 31 figuresRecent measurements by the T2K neutrino oscillation experiment indicate that CP violation in neutrino mixing may be observed in the future by long-baseline neutrino oscillation experiments. We propose an extension to the currently approved T2K running from 7.8\times 10^{21}~\mbox{POT} to 20\times 10^{21}~\mbox{POT}, aiming at initial observation of CP violation with 3σ\,\sigma or higher significance for the case of maximum CP violation. The program also contains a measurement of mixing parameters, θ23\theta_{23} and Δm322\Delta m^2_{32}, with a precision of 1.7^\circ or better and 1%, respectively. With accelerator and beamline upgrades, as well as analysis improvements, this program would occur before the next generation of long-baseline neutrino oscillation experiments that are expected to start operation in 2026

    Clinical Use and Therapeutic Potential of IVIG/SCIG, Plasma-Derived IgA or IgM, and Other Alternative Immunoglobulin Preparations

    Get PDF
    Intravenous and subcutaneous immunoglobulin preparations, consisting of IgG class antibodies, are increasingly used to treat a broad range of pathological conditions, including humoral immune deficiencies, as well as acute and chronic inflammatory or autoimmune disorders. A plethora of Fab- or Fc-mediated immune regulatory mechanisms has been described that might act separately or in concert, depending on pathogenesis or stage of clinical condition. Attempts have been undertaken to improve the efficacy of polyclonal IgG preparations, including the identification of relevant subfractions, mild chemical modification of molecules, or modification of carbohydrate side chains. Furthermore, plasma-derived IgA or IgM preparations may exhibit characteristics that might be exploited therapeutically. The need for improved treatment strategies without increase in plasma demand is a goal and might be achieved by more optimal use of plasma-derived proteins, including the IgA and the IgM fractions. This article provides an overview on the current knowledge and future strategies to improve the efficacy of regular IgG preparations and discusses the potential of human plasma-derived IgA, IgM, and preparations composed of mixtures of IgG, IgA, and IgM
    corecore