887 research outputs found

    Upstream-binding factor is sequestered into herpes simplex virus type 1 replication compartments

    Get PDF
    Previous reports have shown that adenovirus recruits nucleolar protein upstream-binding factor (UBF) into adenovirus DNA replication centres. Here, we report that despite having a different mode of viral DNA replication, herpes simplex virus type 1 (HSV-1) also recruits UBF into viral DNA replication centres. Moreover, as with adenovirus, enhanced green fluorescent protein-tagged fusion proteins of UBF inhibit viral DNA replication. We propose that UBF is recruited to the replication compartments to aid replication of HSV-1 DNA. In addition, this is a further example of the role of nucleolar components in viral life cycle

    Electrostatics in wind-blown sand

    Full text link
    Wind-blown sand, or "saltation," is an important geological process, and the primary source of atmospheric dust aerosols. Significant discrepancies exist between classical saltation theory and measurements. We show here that these discrepancies can be resolved by the inclusion of sand electrification in a physically based saltation model. Indeed, we find that electric forces enhance the concentration of saltating particles and cause them to travel closer to the surface, in agreement with measurements. Our results thus indicate that sand electrification plays an important role in saltation.Comment: 4 journal pages, 5 figures, and supplementary material. Article is in press at PR

    VEGETATION FIRE FUELS MAPPING IN THE SAN DIEGO CITY CANYONS – A METHOD COMPARISON

    Get PDF
    Fire risk is a major threat to life, property and natural resources in southern California. Recent fire disasters occurred in autumn 2003 and 2007. Fire risk management deals with these hazards, input data are collected, analyzed and evaluated. One of the most important input data is the vegetation density in the endangered areas. Here we describe methods to map vegetation density forming five hazard classes. The main objective of this study is to explore the benefits of using remote sensed data for the accurate classification of vegetation in San Diego city canyons. Three very high resolution remote sensing data sets (< 1 m) were used in comparison: scanned color infrared film (CIR) airborne, digital multi-spectral airborne (ADS40) and digital multi-spectral satellite imagery (QuickBird). Different classification approaches (e.g. pixel-based, segment-based and knowledge-based) were tested and analyzed to separate the vegetation into five hazard classes. Accuracy assessment indicated low overall accuracies of 58 % on average. With regard to an optimized classification result in particular unsupervised and segment-based classification can be recommended. The overall accuracy for these two methods reached around 62 %. The use of specially selected reference areas for validation helped to increase the accuracies up to 81 %. Also a separating between three instead of five different hazard classes resulted in accuracies around 80 %. Furthermore it could be shown that all three data sets can be used for successful classification procedures. The resulting fire risk maps can help to reduce or prevent fire hazards. The maps are a basis for the brush management of the Fir

    Drop Splashing on a Dry Smooth Surface

    Full text link
    The corona splash due to the impact of a liquid drop on a smooth dry substrate is investigated with high speed photography. A striking phenomenon is observed: splashing can be completely suppressed by decreasing the pressure of the surrounding gas. The threshold pressure where a splash first occurs is measured as a function of the impact velocity and found to scale with the molecular weight of the gas and the viscosity of the liquid. Both experimental scaling relations support a model in which compressible effects in the gas are responsible for splashing in liquid solid impacts.Comment: 11 pages, 4 figure

    Social Complexity and Nesting Habits Are Factors in the Evolution of Antimicrobial Defences in Wasps

    Get PDF
    Microbial diseases are important selective agents in social insects and one major defense mechanism is the secretion of cuticular antimicrobial compounds. We hypothesized that given differences in group size, social complexity, and nest type the secretions of these antimicrobials will be under different selective pressures. To test this we extracted secretions from nine wasp species of varying social complexity and nesting habits and assayed their antimicrobial compounds against cultures of Staphylococcus aureus. These data were then combined with phylogenetic data to provide an evolutionary context. Social species showed significantly higher (18x) antimicrobial activity than solitary species and species with paper nests showed significantly higher (11x) antimicrobial activity than those which excavated burrows. Mud-nest species showed no antimicrobial activity. Solitary, burrow-provisioning wasps diverged at more basal nodes of the phylogenetic trees, while social wasps diverged from the most recent nodes. These data suggest that antimicrobial defences may have evolved in response to ground-dwelling pathogens but the most important variable leading to increased antimicrobial strength was increase in group size and social complexity

    Biological invasions, ecological resilience and adaptive governance

    Get PDF
    In a world of increasing interconnections in global trade as well as rapid change in climate and land cover, the accelerating introduction and spread of invasive species is a critical concern due to associated negative social and ecological impacts, both real and perceived. Much of the societal response to invasive species to date has been associated with negative economic consequences of invasions. This response has shaped a war-like approach to addressing invasions, one with an agenda of eradications and intense ecological restoration efforts towards prior or more desirable ecological regimes. This trajectory often ignores the concept of ecological resilience and associated approaches of resilience-based governance. We argue that the relationship between ecological resilience and invasive species has been understudied to the detriment of attempts to govern invasions, and that most management actions fail, primarily because they do not incorporate adaptive, learning-based approaches. Invasive species can decrease resilience by reducing the biodiversity that underpins ecological functions and processes, making ecosystems more prone to regime shifts. However, invasions do not always result in a shift to an alternative regime; invasions can also increase resilience by introducing novelty, replacing lost ecological functions or adding redundancy that strengthens already existing structures and processes in an ecosystem. This paper examines the potential impacts of species invasions on the resilience of ecosystems and suggests that resilience-based approaches can inform policy by linking the governance of biological invasions to the negotiation of tradeoffs between ecosystem services

    Evolution of the gulf of Cadiz margin and southwest Portugal contourite depositional system : Tectonic, sedimentary and paleoceanographic implications from IODP expedition 339

    Get PDF
    Acknowledgments This research used samples and data collected through the Integrated Ocean Drilling Program (IODP). The research was partially supported through the CTM 2008-06399-C04/MAR, CTM 2012-39599-C03, CGL2011-26493, CTM2012-38248, SA263U14, IGCP-619, INQUA 1204 and FWF P25831-N29 Projects. Some data were collected with 94-1090-C03-03 (FADO) and MAR-98-0209 (TASYO) Projects. Research was conducted in the framework of the Continental Margins Research Group of the Royal Holloway University of London, People and the Program (Marie Curie Actions) of the European Union's Seventh Framework Program FP7/2007-2013/ under REA Grant Agreement No. 290201 MEDGATE’. We are very grateful to REPSeOL, TGS–NOPEC, and the CSIC-Institut Jaume Almera (http://geodb.ictja.csic.es) for allowing us to use an unpublished seismic data from the Gulf of Cadiz. We thank J. Aguire (UGR, Spain) for comments and suggestions concerning the Pliocene and Quaternary outcrops, B. van den Berg (USAL) for organizing a thought-provoking field-trip to Cadiz, Spain in November, 2014, M. Ángel Caja, L. García Diego, and J. Tritlla (REPSOL) for provenance and diagenetic analysis of early Pliocene sandstones and debrites, and L.J. Lourens (Utrecht University) for providing us the eccentricity and 200-Kys glacio-eustatic sea-level curves included in the Figure 16. Both Prof. D.A.V. Stow (Heriot-Watt Univ., UK) and F.J. Hernández-Molina (RHUL, UK), as the main co-proponents of the IODP Proposal 644 and the co-chiefs of the IODP Exp. 339, thanks to IODP, Exp. IODP 339 Scientists; JR crew and technicians, as well as all people, institutions and companies involved in making IODP a success since 2003. Finally, we also thank the editor, Gert J. De Lange and the reviewers T. Mulder (Bourdeaux Univ.); D. Van Rooij (Ghent Univ) and J. Duarte (Monash Univ.) for their very positive and helpful feedback and discussions in publishing this research.Peer reviewedPublisher PD

    Macrosystems ecology: Understanding ecological patterns and processes at continental scales

    Get PDF
    Macrosystems ecology is the study of diverse ecological phenomena at the scale of regions to continents and their interactions with phenomena at other scales. This emerging subdiscipline addresses ecological questions and environmental problems at these broad scales. Here, we describe this new field, show how it relates to modern ecological study, and highlight opportunities that stem from taking a macrosystems perspective. We present a hierarchical framework for investigating macrosystems at any level of ecological organization and in relation to broader and finer scales. Building on well-established theory and concepts from other subdisciplines of ecology, we identify feedbacks, linkages among distant regions, and interactions that cross scales of space and time as the most likely sources of unexpected and novel behaviors in macrosystems. We present three examples that highlight the importance of this multiscaled systems perspective for understanding the ecology of regions to continents
    corecore