15 research outputs found

    Distributed Cognition as the Basis for Adaptation and Homeostasis in Robots

    Get PDF
    Many researchers approach the problem of building autonomous systems by looking to biology for inspiration. This has given rise to a wide-range of artificial systems mimicking their biological counterparts—artificial neural networks, artificial endocrine systems, and artificial musculoskeletal systems are prime examples. While these systems are succinct and work well in isolation, they can become cumbersome and complicated when combined to perform more complex tasks. Autonomous behaviour is one such complex task. This thesis considers autonomy as the complex behaviour it is, and proposes a bottom-up approach to developing autonomous behaviour from cognition. This consists of investigating how cognition can provide new approaches to the current limitations of swarm systems, and using this as the basis for one type of autonomous behaviour: artificial homeostasis. Distributed cognition, a form of emergent cognition, is most often described in terms of the immune system and social insects. By taking inspiration from distributed cognition, this thesis details the development of novel algorithms for cognitive decision-making and emergent identity in leaderless, homogenous swarms. Artificial homeostasis is provided to a robot through an architecture that combines the cognitive decision-making algorithm with a simple associative memory. This architecture is used to demonstrate how a simple architecture can endow a robot with the capacity to adapt to an unseen environment, and use that information to proactively seek out what it needs from the environment in order to maintain its internal state

    Evaluating Mixed-Initiative Procedural Level Design Tools using a Triple-Blind Mixed-Method User Study

    Get PDF
    Results from a triple-blind mixed-method user study into the effectiveness of mixed-initiative tools for the procedural generation of game levels are presented. A tool which generates levels using interactive evolutionary optimisation was designed for this study which (a) is focused on supporting the designer to explore the design space and (b) only requires the designer to interact with it by designing levels. The tool identifies level design patterns in an initial hand-designed map and uses that information to drive an interactive optimisation algorithm. A rigorous user study was designed which compared the experiences of designers using the mixed-initiative tool to designers who were given a tool which provided completely random level suggestions. The designers using the mixed-initiative tool showed an increased engagement in the level design task, reporting that it was effective in inspiring new ideas and design directions. This provides significant evidence that procedural content generation can be used as a powerful tool to support the human design process

    Reaction–diffusion chemistry implementation of associative memory neural network

    Get PDF
    Unconventional computing paradigms are typically very difficult to program. By implementing efficient parallel control architectures such as artificial neural networks, we show that it is possible to program unconventional paradigms with relative ease. The work presented implements correlation matrix memories (a form of artificial neural network based on associative memory) in reaction–diffusion chemistry, and shows that implementations of such artificial neural networks can be trained and act in a similar way to conventional implementations

    Preserving Swarm Identity Over Time

    No full text
    Collective identity helps swarms remain coherent in the presence of others. Building identity into artificial systems enables groups of agents to work in the same area as one another, without interference from other agents. By linking the firefly algorithm to the control logic of the agents, we present a method to form and maintain identity in swarms. By measuring swarm polarization, and swarm overlap, we show that the inclusion of an identity allows a swarm to remain coherent for an extended period of time, without interference from other swarms

    Associative Memory in Reaction-Diffusion Chemistry

    No full text
    Unconventional computing paradigms are typically very difficult to program. By implementing efficient parallel control architectures such as artificial neural networks, we show that it is possible to program unconventional paradigms with relative ease. The work presented implements correlation matrix memories (a form of artificial neural network based on associative memory) in reaction-diffusion chemistry, and shows that implementations of such artificial neural networks can be trained and act in a similar way to conventional implementations

    Neural Cellular Automata Can Respond to Signals

    Get PDF
    Neural Cellular Automata (NCAs) are a model of morphogenesis, capable of growing two-dimensional artificial organisms from a single seed cell. In this paper, we show that NCAs can be trained to respond to signals. Two types of signal are used: internal (genomically-coded) signals, and external (environmental) signals. Signals are presented to a single pixel for a single timestep. Results show NCAs are able to grow into multiple distinct forms based on internal signals, and are able to change colour based on external signals. Overall these contribute to the development of NCAs as a model of artificial morphogenesis, and pave the way for future developments embedding dynamic behaviour into the NCA model. Code and target images are available through GitHub: https://github.com/jstovold/ALIFE202

    Simulating Neurons in Reaction-Diffusion Chemistry

    No full text
    Diffusive Computation is a method of using diffusing particles as a representation of data. The work presented attempts to show that through simulating spiking neurons, diffusive computation has at least the same computational power as spiking neural networks. We demonstrate (by simulation) that wavefronts in a Reaction-Diffusion system have a cumulative effect on concentration of reaction components when they arrive at the same point in the reactor, and that a catalyst-free region acts as a threshold on the initiation of an outgoing wave. Spiking neuron models can be mapped onto this system, and therefore RD systems can be used for computation using the same models as are applied to spiking neurons
    corecore