361 research outputs found

    Pressure-Driven Poiseuille Flow: A Major Component of the Torque-Balance Governing Pacific Plate Motion

    Get PDF
    The Pacific Plate is thought to be driven mainly by slab pull, associated with subduction along the Aleutians-Japan, Marianas-Izu-Bonin, and Tonga-Kermadec trenches. This implies that viscous flow within the sub-Pacific asthenosphere is mainly generated by overlying plate motion (i.e., Couette flow) and that the associated shear stresses at the lithosphere's base are resisting such motion. Recent studies on glacial isostatic adjustment and lithosphere dynamics provide tighter constraints on the viscosity and thickness of Earth's asthenosphere and, therefore, on the amount of shear stress that asthenosphere and lithosphere mutually exchange, by virtue of Newton's third law of motion. In light of these constraints, the notion that subduction is the main driver of present-day Pacific Plate motion becomes somewhat unviable, as the pulling force that would be required by slabs exceeds the maximum available from their negative buoyancy. Here we use coupled global models of mantle and lithosphere dynamics to show that the sub-Pacific asthenosphere features a significant component of pressure-driven (i.e., Poiseuille) flow and that this has driven at least 50% of the Pacific Plate motion since, at least, 15 Ma. A corollary of our models is that a sublithospheric pressure difference as high as ±50 MPa is required across the Pacific domain.I. L. S. acknowledges support from CONICYT Becas-Chile scholarship and from IGN at the University of Copenhagen. D. R. D. acknowledges funding from the Australian Research Council, via grants FT140101262 and DP170100058

    Rapid South Atlantic spreading changes and coeval vertical motion in surrounding continents: Evidence for temporal changes of pressure-driven upper mantle flow

    No full text
    International audienceThe South Atlantic region displays (1) a topographic gradient across the basin, with Africa elevated relative to South America, (2) a bimodal spreading history with fast spreading rates in Late Cretaceous and Eo-Oligocene, and (3) episodic regional uplift events in the adjacent continents concentrated in Late Cretaceous and Oligocene. Here we show that these observations can be linked by dynamic processes within Earth's mantle, through temporal changes in asthenosphere flow beneath the region. The topographic gradient implies westward, pressure-driven mantle flow beneath the basin, while the rapid spreading rate changes, on order 10 million years, require significant decoupling of regional plate motion from the large-scale mantle buoyancy distribution through a mechanically weak asthenosphere. Andean topographic growth in late Miocene can explain the most recent South Atlantic spreading velocity reduction, arising from increased plate boundary forcing associated with the newly elevated topography. But this mechanism is unlikely to explain the Late Cretaceous/Tertiary spreading variations, as changes in Andean paleoelevation at the time are small. We propose an unsteady pressure-driven flow component in the asthenosphere beneath the South Atlantic region to explain the Late Cretaceous/Tertiary spreading rate variations. Temporal changes in mantle flow due to temporal changes in regional mantle pressure gradients imply a correlation of horizontal and vertical motions: we find that this prediction from our models agrees with geologic and geophysical observations of the South Atlantic region, including episodes of passive margin uplift, regional basin reactivation, and magmatic activity

    Observation of second-harmonic generation induced by pure spin currents

    Get PDF
    Extensive efforts are currently being devoted to developing a new electronic technology, called spintronics, where the spin of electrons is explored to carry information. [1,2] Several techniques have been developed to generate pure spin currents in many materials and structures. [3-10] However, there is still no method available that can be used to directly detect pure spin currents, which carry no net charge current and no net magnetization. Currently, studies of pure spin currents rely on measuring the induced spin accumulation with optical techniques [5, 11-13] or spin-valve configurations. [14-17] However, the spin accumulation does not directly reflect the spatial distribution or temporal dynamics of the pure spin current, and therefore cannot monitor the pure spin current in a real-time and real-space fashion. This imposes severe constraints on research in this field. Here we demonstrate a second-order nonlinear optical effect of the pure spin current. We show that such a nonlinear optical effect, which has never been explored before, can be used for the non-invasive, non-destructive, and real-time imaging of pure spin currents. Since this detection scheme does not rely on optical resonances, it can be generally applied in a wide range of materials with different electronic bandstructures. Furthermore, the control of nonlinear optical properties of materials with pure spin currents may have potential applications in photonics integrated with spintronics.Comment: 19 pages, 3 figures, supplementary discussion adde

    Teaching undergraduate students gynecological and obstetrical examination skills: the patient's opinion

    Get PDF
    Introduction Our study assesses the patients’ opinion about gynecological examination performed by undergraduate students (UgSts). This assessment will be used in improving our undergraduate training program. A positive opinion would mean a lower chance of a patient refusing to be examined by a tutor or student, taking into account vaginal examination (VE). Materials and methods We performed a prospective cross-sectional survey on 1194 patients, consisting of outpatient and inpatient at the departments of obstetrics and gynecology from November 2015 to May 2016. The questionnaire consisted of 46 questions. Besides demographic data, we assessed the mindset of patients regarding the involvement of undergradu ate student (UgSt) in gynecological and obstetrical examinations. We used SPSS version 23 for the statistical analysis. For reporting the data, we followed the STROBE statement of reporting observational studies. Results The median age was 38 years having a median of one child. 34% presented due to obstetrical problems, 38% due to gynecological complaints, and 19% due to known gynecological malignancies. Generally, we retrieved a positive opinion of patients towards the involvement of students in gynecological and obstetrical examination under supervision in 2/3 of the cases. Conclusions There is no reason to exclude medical UgSts from gynecological and obstetrical examinations after obtaining a written or oral consent

    How Does the Diversity of Divers Affect the Design of Citizen Science Projects?

    Get PDF
    Divers have widely participated in citizen science (CS) projects and are one of the main groups of marine citizen scientists. However, there is little knowledge about profiles of, and incentives for potential divers to join CS projects. To date, most studies have focused on the SCUBA diving industry; nevertheless, there is a diversity of divers, not all using SCUBA, who engage in different activities during their dives. Differences in diver profiles could affect their willingness and ability to contribute to CS. In this study, we compare the diving profile, interests, preferences and motivations to participate in CS of five diver types (artisanal fishermen, recreational divers, instructors, scientific divers, and others). All divers have strong interests in participating in CS projects, with no major differences among diver types. In general, they are interested in a wide variety of themes related to CS but they prefer simple sampling protocols. Divers are motivated to participate in CS to learn about the sea and contribute to science. Some important differences among diver types were found, with artisanal fishermen having significantly more dive experience than other diver types, but less free time during their dives and limited access to some communication channels and technologies. These characteristics make them ideal partners to contribute their local ecological knowledge (LEK) to local CS projects. In contrast, recreational divers have the least experience but most free time during their dives and good access to cameras and communications channels, making them suitable partners for large-scale CS projects that do not require a high level of species knowledge. Instructors and scientific divers are well-placed to coordinate and supervise CS activities. The results confirm that divers are not all alike and specific considerations have to be taken into account to improve the contribution of each diver type to CS. The findings provide essential information for the design of different types of CS projects. By considering the relevant incentives and opportunities for diverse diver groups, marine CS projects will make efficient gains in volunteer recruitment, retention, and collaborative generation of knowledge about the marine environment

    Hierarchy Theory of Evolution and the Extended Evolutionary Synthesis: Some Epistemic Bridges, Some Conceptual Rifts

    Get PDF
    Contemporary evolutionary biology comprises a plural landscape of multiple co-existent conceptual frameworks and strenuous voices that disagree on the nature and scope of evolutionary theory. Since the mid-eighties, some of these conceptual frameworks have denounced the ontologies of the Modern Synthesis and of the updated Standard Theory of Evolution as unfinished or even flawed. In this paper, we analyze and compare two of those conceptual frameworks, namely Niles Eldredge’s Hierarchy Theory of Evolution (with its extended ontology of evolutionary entities) and the Extended Evolutionary Synthesis (with its proposal of an extended ontology of evolutionary processes), in an attempt to map some epistemic bridges (e.g. compatible views of causation; niche construction) and some conceptual rifts (e.g. extra-genetic inheritance; different perspectives on macroevolution; contrasting standpoints held in the “externalism–internalism” debate) that exist between them. This paper seeks to encourage theoretical, philosophical and historiographical discussions about pluralism or the possible unification of contemporary evolutionary biology

    Electrons surfing on a sound wave as a platform for quantum optics with flying electrons

    Get PDF
    Electrons in a metal are indistinguishable particles that strongly interact with other electrons and their environment. Isolating and detecting a single flying electron after propagation to perform quantum optics like experiments at the single electron level is therefore a challenging task. Up to date, only few experiments have been performed in a high mobility two-dimensional electron gas where the electron propagates almost ballistically. Flying electrons were detected via the current generated by an ensemble of electrons and electron correlations were encrypted in the current noise. Here we demonstrate the experimental realisation of high efficiency single electron source and single electron detector for a quantum medium where a single electron is propagating isolated from the other electrons through a one-dimensional channel. The moving potential is excited by a surface acoustic wave, which carries the single electron along the 1D-channel at a speed of 3\mum/ns. When such a quantum channel is placed between two quantum dots, a single electron can be transported from one quantum dot to the other, which is several micrometres apart, with a quantum efficiency of emission and detection of 96% and 92%, respectively. Furthermore, the transfer of the electron can be triggered on a timescale shorter than the coherence time T2* of GaAs spin qubits6. Our work opens new avenues to study the teleportation of a single electron spin and the distant interaction between spatially separated qubits in a condensed matter system.Comment: Total 25 pages. 12 pages main text, 4 figures, 5 pages supplementary materia

    Carotid Plaque Age Is a Feature of Plaque Stability Inversely Related to Levels of Plasma Insulin

    Get PDF
    C-declination curve (a result of the atomic bomb tests in the 1950s and 1960s) to determine the average biological age of carotid plaques.C content by accelerator mass spectrometry. The average plaque age (i.e. formation time) was 9.6±3.3 years. All but two plaques had formed within 5–15 years before surgery. Plaque age was not associated with the chronological ages of the patients but was inversely related to plasma insulin levels (p = 0.0014). Most plaques were echo-lucent rather than echo-rich (2.24±0.97, range 1–5). However, plaques in the lowest tercile of plaque age (most recently formed) were characterized by further instability with a higher content of lipids and macrophages (67.8±12.4 vs. 50.4±6.2, p = 0.00005; 57.6±26.1 vs. 39.8±25.7, p<0.0005, respectively), less collagen (45.3±6.1 vs. 51.1±9.8, p<0.05), and fewer smooth muscle cells (130±31 vs. 141±21, p<0.05) than plaques in the highest tercile. Microarray analysis of plaques in the lowest tercile also showed increased activity of genes involved in immune responses and oxidative phosphorylation.C, can improve our understanding of carotid plaque stability and therefore risk for clinical complications. Our results also suggest that levels of plasma insulin might be involved in determining carotid plaque age

    Copper complexes as a source of redox active MRI contrast agents

    Get PDF
    The study reports an advance in designing copper-based redox sensing MRI contrast agents. Although the data demonstrate that copper(II) complexes are not able to compete with lanthanoids species in terms of contrast, the redox-dependent switch between diamagnetic copper(I) and paramagnetic copper(II) yields a novel redox-sensitive contrast moiety with potential for reversibility
    • …
    corecore