493 research outputs found

    Enhanced extra mixing in low-mass stars approaching the RGB tip and the problem of Li-rich red-clump stars

    Full text link
    A few percent of red giants are enriched in Lithium with A(Li)>1.5A(\mathrm{Li}) > 1.5. The evolutionary phase of the Li-rich red giants has remained uncertain because they could be placed both on the red-giant branch (RGB) near the bump luminosity and in the red clump (RC) region. However, thanks to asteroseismology, it has been found that most of them are actually RC stars. Starting at the bump luminosity, RGB progenitors of the RC stars experience extra mixing in the radiative zone separating the H-burning shell from the convective envelope followed by a series of convective He-shell flashes at the RGB tip, known as the He-core flash. Therefore, the He-core flash was proposed to cause fast extra mixing in the stars at the RGB tip that is needed for the Cameron-Fowler mechanism to produce Li. Alternatively, we propose that the RGB stars are getting enriched in Li by the same extra mixing that starts at the bump luminosity and initially leads to a decrease of the surface Li abundance but that is getting enhanced and begins to produce Li when the stars are approaching the RGB tip. We discuss five mechanisms of the RGB extra mixing, namely, the joint operation of rotation-driven meridional circulation and turbulent diffusion, the Azimuthal Magneto-Rotational Instability (AMRI), thermohaline convection, buoyancy of magnetic flux tubes, and internal gravity waves, and, based on results of (magneto-) hydrodynamics simulations, come to the conclusion that it is the mechanism of the AMRI that is most likely to support our hypothesis.Comment: 14 pages, 7 figures, submitted to MNRA

    Neurogenin2 Directs Granule Neuroblast Production and Amplification while NeuroD1 Specifies Neuronal Fate during Hippocampal Neurogenesis

    Get PDF
    The specification and differentiation of dentate gyrus granule neurons in the hippocampus require temporally and spatially coordinated actions of both intrinsic and extrinsic molecules. The basic helix-loop-helix transcription factor Neurogenin2 (Ngn2) and NeuroD1 are key regulators in these processes. Based on existing classification, we analyzed the molecular events occurring during hippocampal neurogenesis, primarily focusing on juvenile animals. We found that Ngn2 is transiently expressed by late type-2a amplifying progenitors. The Ngn2 progenies mature into hippocampal granule neurons. Interestingly, the loss of Ngn2 at early stages of development leads to a robust reduction in neurogenesis, but does not disturb granule neuron maturation per se. We found that the role of Ngn2 is to maintain progenitors in an undifferentiated state, allowing them to amplify prior to their maturation into granule neurons upon NeuroD1 induction. When we overexpressed Ngn2 and NeuroD1 in vivo, we found NeuroD1 to exhibit a more pronounced neuron-inductive effect, leading to granule neuron commitment, than that displayed by Ngn2. Finally, we observed that all markers expressed during the transcriptional control of hippocampal neurogenesis in rodents are also present in the human hippocampus. Taken together, we demonstrate a critical role of for Ngn2 and NeuroD1 in controlling neuronal commitment and hippocampal granule neuroblast formation, both during embryonic development and in post-natal hippocampal granule neurogenesis

    Expression and cellular localization of hepcidin mRNA and protein in normal rat brain

    Get PDF
    Abstract Background Hepcidin is a peptide hormone belonging to the defensin family of cationic antimicrobial molecules that has an essential role in systemic iron homeostasis. The peptide is synthesised by hepatocytes and transported in the circulation to target tissues where it regulates the iron export function of the ferrous iron permease, ferroportin. In the brain hepcidin protein has been identified using immuno-histochemistry and mRNA by real-time PCR but not by in situ hybridisation raising the question of whether there is measurable transcription of the hepcidin gene in the central nervous system. Alternatively hepcidin could be transported as a hormone to the brain via the circulation. Results By RT-PCR hepcidin mRNA was present at low level throughout normal rat brain while in situ hybridisation to detect low-abundant mRNA revealed that transcripts were restricted to endothelium of blood vessels and choroid plexus. In contrast, hepcidin protein analysed by immuno-histochemistry was highly expressed in blood vessels, in endothelium and in pericytes. Hepcidin was also present in glial cells and in the olfactory bulb, sub-ventricular zone and dentate gyrus, areas where neurogenesis and synaptic plasticity are maintained throughout adult life. The hepcidin species identified by Western blotting in sub-ventricular zone, cortex and hippocampus migrated as a ~2.8 kDa band, identical in size to hepcidin present in normal rat serum suggesting that hepcidin in brain was the full-length biologically active 25 amino acid peptide. Hepcidin co-localised with ferroportin in ependymal cells of the sub-ventricular zone and in the corpus callosum consistent with a regulatory role in iron metabolism at these sites. Conclusions Hepcidin protein was widely expressed in brain parenchyma while levels of hepcidin gene transcription appeared to be below the limits of detection of the in situ hybridisation probes. This disparity suggests that not all hepcidin in the brain is transcribed in situ and may originate in part outside the brain. The properties of hepcidin as a cationic peptide hormone are reflected in the finding of hepcidin in the walls of blood vessels and in pericytes and glia, cells that may be involved in transporting the peptide into brain interstitium

    Prospect relativity: how choice options influence decision under risk.

    Get PDF
    In many theories of decision under risk (e.g., expected utility theory, rank-dependent utility theory, and prospect theory), the utility of a prospect is independent of other options in the choice set. The experiments presented here show a large effect of the available options, suggesting instead that prospects are valued relative to one another. The judged certainty equivalent for a prospect is strongly influenced by the options available. Similarly, the selection of a preferred prospect is strongly influenced by the prospects available. Alternative theories of decision under risk (e.g., the stochastic difference model, multialternative decision field theory, and range frequency theory), where prospects are valued relative to one another, can provide an account of these context effects

    Structural insights into the mechanism of negative regulation of single-box high mobility group proteins by the acidic tail domain.

    Get PDF
    The Drosophila and plant (maize) functional counterparts of the abundant vertebrate chromosomal protein HMGB1 (HMG-D and ZmHMGB1, respectively) differ from HMGB1 in having a single HMG box, as well as basic and acidic flanking regions that vary greatly in length and charge. We show that despite these variations, HMG-D and ZmHMGB1 exist in dynamic assemblies in which the basic HMG boxes and linkers associate with their intrinsically disordered, predominantly acidic, tails in a manner analogous to that observed previously for HMGB1. The DNA-binding surfaces of the boxes and linkers are occluded in "auto-inhibited" forms of the protein, which are in equilibrium with transient, more open structures that are "binding-competent." This strongly suggests that the mechanism of auto-inhibition may be a general one. HMG-D and ZmHMGB1 differ from HMGB1 in having phosphorylation sites in their tail and linker regions. In both cases, in vitro phosphorylation of serine residues within the acidic tail stabilizes the assembled form, suggesting another level of regulation for interaction with DNA, chromatin, and other proteins that is not possible for the uniformly acidic (hence unphosphorylatable) tail of HMGB1.This work was supported by the Biotechnology and Biological Sciences Research Council through the award of Grant BB/D002257/1 (to J. O. T.) and a grant from the Deutsche Forschungsgemeinschaft (DFG) (to K. D. G.).This is the final published version. It first appeared at http://www.jbc.org/content/289/43/29817.long

    Expression and cellular localization of hepcidin mRNA and protein in normal rat brain.

    Get PDF
    BACKGROUND: Hepcidin is a peptide hormone belonging to the defensin family of cationic antimicrobial molecules that has an essential role in systemic iron homeostasis. The peptide is synthesised by hepatocytes and transported in the circulation to target tissues where it regulates the iron export function of the ferrous iron permease, ferroportin. In the brain hepcidin protein has been identified using immuno-histochemistry and mRNA by real-time PCR but not by in situ hybridisation raising the question of whether there is measurable transcription of the hepcidin gene in the central nervous system. Alternatively hepcidin could be transported as a hormone to the brain via the circulation. RESULTS: By RT-PCR hepcidin mRNA was present at low level throughout normal rat brain while in situ hybridisation to detect low-abundant mRNA revealed that transcripts were restricted to endothelium of blood vessels and choroid plexus. In contrast, hepcidin protein analysed by immuno-histochemistry was highly expressed in blood vessels, in endothelium and in pericytes. Hepcidin was also present in glial cells and in the olfactory bulb, sub-ventricular zone and dentate gyrus, areas where neurogenesis and synaptic plasticity are maintained throughout adult life. The hepcidin species identified by Western blotting in sub-ventricular zone, cortex and hippocampus migrated as a ~2.8 kDa band, identical in size to hepcidin present in normal rat serum suggesting that hepcidin in brain was the full-length biologically active 25 amino acid peptide. Hepcidin co-localised with ferroportin in ependymal cells of the sub-ventricular zone and in the corpus callosum consistent with a regulatory role in iron metabolism at these sites. CONCLUSIONS: Hepcidin protein was widely expressed in brain parenchyma while levels of hepcidin gene transcription appeared to be below the limits of detection of the in situ hybridisation probes. This disparity suggests that not all hepcidin in the brain is transcribed in situ and may originate in part outside the brain. The properties of hepcidin as a cationic peptide hormone are reflected in the finding of hepcidin in the walls of blood vessels and in pericytes and glia, cells that may be involved in transporting the peptide into brain interstitium

    The association of kidney function and cognitive decline in older patients at risk of cardiovascular disease: a longitudinal data analysis

    Get PDF
    Background: Chronic kidney disease (CKD) has been identified as a significant direct marker for cognitive decline, but controversy exists regarding the magnitude of the association of kidney function with cognitive decline across the different CKD stages. Therefore, the aim of this study was to investigate the association of kidney function with cognitive decline in older patients at high risk of cardiovascular disease, using data from the PROspective Study of Pravastatin in the Elderly at Risk (PROSPER). Methods Data of 5796 patients of PROSPER were used. Strata were made according to clinical stages of CKD based on estimated glomerular filtration rate; < 30 ml/min/1.73m2 (stage 4), 30-45 ml/min/1.73m2 (stage 3b), 45-60 ml/min/1.73m2 (stage 3a) and ≥ 60 ml/min/1.73m2 (stage 1–2). Cognitive function and functional status was assessed at six different time points and means were compared at baseline and over time, adjusted for multiple prespecified variables. Stratified analyses for history of vascular disease were executed. Results: Mean age was 75.3 years and 48.3% participants were male. Mean follow-up was 3.2 years. For all cognitive function tests CKD stage 4 compared to the other stages had the worst outcome at baseline and a trend for faster cognitive decline over time. When comparing stage 4 versus stage 1–2 over time the estimates (95% CI) were 2.23 (0.60–3.85; p = 0.009) for the Stroop-Colour-Word test, − 0.33 (− 0.66–0.001; p = 0.051) for the Letter-Digit-Coding test, 0.08 (− 0.06–0.21; p = 0.275) for the Picture-Word-Learning test with immediate recall and − 0.07 (− 0.02–0.05; p = 0.509) for delayed recall. This association was most present in patients with a history of vascular disease. No differences were found in functional status. Conclusion: In older people with vascular burden, only severe kidney disease (CKD stage 4), but not mild to modest kidney disease (CKD stage 3a and b), seem to be associated with cognitive impairment at baseline and cognitive decline over time. The association of severe kidney failure with cognitive impairment and decline over time was more outspoken in patients with a history of vascular disease, possibly due to a higher probability of polyvascular damage, in both kidney and brain, in patients with proven cardiovascular disease
    • …
    corecore