1,520 research outputs found

    Allometry of Workers of the Fire Ant, Solenopsis invicta

    Get PDF
    The relationship between worker body size and the shape of their body parts was explored in the polymorphic ant, Solenopsis invicta. The data consisted of 20 measurements of body parts as well as sums of some of these measurements. Size-free shape variables were created by taking the ratios of relevant measures. After log-transformation, these ratios were regressed against the logarithm of total body length, or against the log of the size of the parent part. Slopes of zero indicated that shape did not change with size, and non-zero slopes signaled a size-related change of shape. Across the range of worker sizes, the head length retained a constant proportion to body length, but relative headwidth increased such that head shape changed from a barrel-profile to a somewhat heart-shaped profile. Antennae became relatively smaller, with the club contributing more to this decline than the other parts. The alinotum became relatively shorter and higher (more humped), and the gaster increased in both relative width and length, and therefore in volume. All three pairs of legs were isometric to body length. The component parts of the legs, with one exception, were isometric to their own total leg length. The body of S. invicta Abbreviation: / HL: head length BL: body length HW1: width across the eyes HW2: width above the eyes HW3: width below the eye

    Distribution, spread, and ecological associations of the introduced ant Pheidole obscurithorax in the southeastern United States

    Get PDF
    A field survey of the southeastern United States showed that Pheidole obscurithorax Naves, an ant introduced from South America, inhabits a 80-km-wide band along the coast between Mobile, Alabama, and Tallahassee, Florida, and is continuing to increase its range. In Tallahassee P. obscurithorax is rapidly spreading, and its nest density increased by a factor of 6.4 over a two-year period. Evidence suggests that P. obscurithorax has spread gradually by natural means. It coexists with the fire ant Solenopsis invicta Buren, appears to be part of a largely exotic community of ants that are tolerant of highly disturbed habitats, and seems to have little negative effect on the ant communities that it invades

    Life Ascending: Mechanism and Process in Physiological Adaptation to High-Altitude Hypoxia

    Get PDF
    To cope with the reduced availability of O2 at high altitude, air-breathing vertebrates have evolved myriad adjustments in the cardiorespiratory system to match tissue O2 delivery with metabolic O2 demand. We explain how changes at interacting steps of the O2 transport pathway contribute to plastic and evolved changes in whole-animal aerobic performance under hypoxia. In vertebrates native to high altitude, enhancements of aerobic performance under hypoxia are attributable to a combination of environ- mentally induced and evolved changes in multiple steps of the pathway. Additionally, evidence suggests that many high-altitude natives have evolved mechanisms for attenuating maladaptive acclimatization responses to hypoxia, resulting in counter-gradient patterns of altitudinal variation for key physiological phenotypes. For traits that exhibit counteracting environmental and genetic effects, evolved changes in phenotype may be cryptic under field conditions and can only be revealed by rearing representatives of high- and low-altitude populations under standardized environmental conditions to control for plasticity

    Deer mouse hemoglobin exhibits a lowered oxygen affinity owing to mobility of the E helix

    Get PDF
    The deer mouse, Peromyscus maniculatus, exhibits altitude-associated variation in hemoglobin oxygen affinity. To examine the structural basis of this functional variation, the structure of the hemoglobin was solved. Recombinant hemoglobin was expressed in Escherichia coli and was purified by ion-exchange chromatography. Recombinant hemoglobin was crystallized by the hangingdrop vapor-diffusion method using polyethylene glycol as a precipitant. The obtained orthorhombic crystal contained two subunits in the asymmetric unit. The refined structure was interpreted as the aquo-met form. Structural comparisons were performed among hemoglobins from deer mouse, house mouse and human. In contrast to human hemoglobin, deer mouse hemoglobin lacks the hydrogen bond between α1Trp14 in the A helix and α1Thr67 in the E helix owing to the Thr67Ala substitution. In addition, deer mouse hemoglobin has a unique hydrogen bond at the α1β1 interface between residues α1Cys34 and β1Ser128

    OPTIS - a satellite-based test of Special and General Relativity

    Get PDF
    A new satellite based test of Special and General Relativity is proposed. For the Michelson-Morley experiment we expect an improvement of at least three orders of magnitude, and for the Kennedy-Thorndike experiment an improvement of more than one order of magnitude. Furthermore, an improvement by two orders of the test of the universality of the gravitational red shift by comparison of an atomic clock with an optical clock is projected. The tests are based on ultrastable optical cavities, an atomic clock and a comb generator.Comment: To appear in Class. Quantum Gra

    Modern Michelson-Morley experiment using cryogenic optical resonators

    Full text link
    We report on a new test of Lorentz invariance performed by comparing the resonance frequencies of two orthogonal cryogenic optical resonators subject to Earth's rotation over 1 year. For a possible anisotropy of the speed of light c, we obtain 2.6 +/- 1.7 parts in 10^15. Within the Robertson-Mansouri-Sexl test theory, this implies an isotropy violation parameter beta - delta - 1/2 of -2.2 +/- 1.5 parts in 10^9, about three times lower than the best previous result. Within the general extension of the standard model of particle physics, we extract limits on 7 parameters at accuracies down to a part in 10^15, improving the best previous result by about two orders of magnitude

    Adaptive online deployment for resource constrained mobile smart clients

    Get PDF
    Nowadays mobile devices are more and more used as a platform for applications. Contrary to prior generation handheld devices configured with a predefined set of applications, today leading edge devices provide a platform for flexible and customized application deployment. However, these applications have to deal with the limitations (e.g. CPU speed, memory) of these mobile devices and thus cannot handle complex tasks. In order to cope with the handheld limitations and the ever changing device context (e.g. network connections, remaining battery time, etc.) we present a middleware solution that dynamically offloads parts of the software to the most appropriate server. Without a priori knowledge of the application, the optimal deployment is calculated, that lowers the cpu usage at the mobile client, whilst keeping the used bandwidth minimal. The information needed to calculate this optimum is gathered on the fly from runtime information. Experimental results show that the proposed solution enables effective execution of complex applications in a constrained environment. Moreover, we demonstrate that the overhead from the middleware components is below 2%

    Evolutionary Dynamics of the Short-Nosed Fruit Bat, \u3ci\u3eCynopterus sphinx \u3c/i\u3e (Pteropodidae): Inferences from the Spatial Scale of Genetic and Phenotypic Differentiation

    Get PDF
    We report the results of a population-genetic study of the short-nosed fruit bat, Cynopterus sphinx (Pteropodidae). The purpose of our study was to assess the relative importance of drift, gene flow, and spatially varying selection in shaping patterns of genetic and phenotypic variation across a latitudinal climatic gradient in peninsular India. At a microgeographic scale, polygynous mating resulted in a substantial reduction of effective population size. However, at a macrogeographic scale, rates of migration were sufficiently high to prevent a pronounced degree of stochastic differentiation via drift. Spatial analysis of genetic and phenotypic differentiation revealed that clinal variation in body size of C. sphinx cannot be explained by a neutral model of isolation by distance. The geographic patterning of morphometric variation is most likely attributable to spatially varying selection and/or the direct influence of latitudinally ordered environmental effects. The combined analysis of genetic and phenotypic variation indicates that recognized subspecies of C. sphinx in peninsular India represent arbitrary subdivisions of a continuous spectrum of clinal size variation

    PRS2 PRESCRIPTION PATTERNS IN COPD PATIENTS IN A GERMAN SICKNESS FUND POPULATION

    Get PDF
    • …
    corecore