1,287 research outputs found

    Cumulant expansion for phonon contributions to the electron spectral function

    Full text link
    We describe an approach for calculations of phonon contributions to the electron spectral function, including both quasiparticle properties and satellites. The method is based on a cumulant expansion for the retarded one-electron Green's function and a many-pole model for the electron self-energy. The electron-phonon couplings are calculated from the Eliashberg functions, and the phonon density of states is obtained from a Lanczos representation of the phonon Green's function. Our calculations incorporate ab initio dynamical matrices and electron-phonon couplings from the density functional theory code ABINIT. Illustrative results are presented for several elemental metals and for Einstein and Debye models with a range of coupling constants. These are compared with experiment and other theoretical models. Estimates of corrections to Migdal's theorem are obtained by comparing with leading order contributions to the self-energy, and are found to be significant only for large electron-phonon couplings at low temperatures

    Suppression of carrier induced ferromagnetism by composition and spin fluctuations in diluted magnetic semiconductors

    Full text link
    We suggest an approach to account for spatial (composition) and thermal fluctuations in "disordered" magnetic models (e.g. Heisenberg, Ising) with given spatial dependence of magnetic spin-spin interaction. Our approach is based on introduction of fluctuating molecular field (rather than mean field) acting between the spins. The distribution function of the above field is derived self-consistently. In general case this function is not Gaussian, latter asymptotics occurs only at sufficiently large spins (magnetic ions) concentrations nin_i. Our approach permits to derive the equation for a critical temperature TcT_c of ferromagnetic phase transition with respect to the above fluctuations. We apply our theory to the analysis of influence of composition fluctuations on TcT_c in diluted magnetic semiconductors (DMS) with RKKY indirect spin-spin interaction.Comment: 6 pages, 2 figure

    Pulmonary tumor thrombotic microangiopathy: a systematic review.

    Get PDF
    Pulmonary tumor thrombotic microangiopathy (PTTM) is a fatal disease process in which pulmonary hypertension (PH) develops in the setting of malignancy. The purpose of this study is to present a detailed analysis of cases of PTTM reported in literature in the hopes of achieving more ante-mortem diagnoses. We conducted a systematic review of currently published and available cases of PTTM by searching the term "pulmonary tumor thrombotic microangiopathy" on the Pubmed.gov database. Seventy-nine publications were included consisting of 160 unique cases of PTTM. The most commonly reported malignancy was gastric adenocarcinoma (94 cases, 59%). Cough and dyspnea were reported in 61 (85%) and 102 (94%) cases, respectively. Hypoxemia was reported in 96 cases (95%). Elevation in D-dimer was noted in 36 cases (95%), presence of anemia in 32 cases (84%), and thrombocytopenia in 30 cases (77%). Common findings on chest computed tomography (CT) included ground-glass opacities (GGO) in 28 cases (82%) and nodules in 24 cases (86%). PH on echocardiography was noted in 59 cases (89%) with an average right ventricular systolic pressure of 71 mmHg. Common features of PTTM that are reported across the published literature include presence of dyspnea and cough, hypoxemia, with abnormal CT findings of GGO, nodules, and mediastinal/hilar lymphadenopathy, and PH. PTTM is a universally fatal disease process and this analysis provides a detailed examination of all the available published data that may help clinicians establish an earlier diagnosis of PTTM

    Pulsar Results with the Fermi Large Area Telescope

    Full text link
    The launch of the Fermi Gamma-ray Space Telescope has heralded a new era in the study of gamma-ray pulsars. The population of confirmed gamma-ray pulsars has gone from 6-7 to more than 60, and the superb sensitivity of the Large Area Telescope (LAT) on Fermi has allowed the detailed study of their spectra and light curves. Twenty-four of these pulsars were discovered in blind searches of the gamma-ray data, and twenty-one of these are, at present, radio quiet, despite deep radio follow-up observations. In addition, millisecond pulsars have been confirmed as a class of gamma-ray emitters, both individually and collectively in globular clusters. Recently, radio searches in the direction of LAT sources with no likely counterparts have been highly productive, leading to the discovery of a large number of new millisecond pulsars. Taken together, these discoveries promise a great improvement in the understanding of the gamma-ray emission properties and Galactic population of pulsars. We summarize some of the results stemming from these newly-detected pulsars and their timing and multi-wavelength follow-up observations.Comment: 21 pages, 9 figures, to appear in Proceedings of ICREA Workshop on The High-Energy Emission from Pulsars and their Systems, Sant Cugat, Spain, 2010 April 12-16 (Springer

    Theory of Diluted Magnetic Semiconductor Ferromagnetism

    Full text link
    We present a theory of carrier-induced ferromagnetism in diluted magnetic semiconductors (III_{1-x} Mn_x V) which allows for arbitrary itinerant-carrier spin polarization and dynamic correlations. Both ingredients are essential in identifying the system's elementary excitations and describing their properties. We find a branch of collective modes, in addition to the spin waves and Stoner continuum which occur in metallic ferromagnets, and predict that the low-temperature spin stiffness is independent of the strength of the exchange coupling between magnetic ions and itinerant carriers. We discuss the temperature dependence of the magnetization and the heat capacity

    Optical followup of galaxy clusters detected by the South Pole Telescope

    Full text link
    The South Pole Telescope (SPT) is a 10 meter telescope operating at mm wavelengths. It has recently completed a three-band survey covering 2500 sq. degrees. One of the survey's main goals is to detect galaxy clusters using Sunyaev-Zeldovich effect and use these clusters for a variety of cosmological and astrophysical studies such as the dark energy equation of state, the primordial non-gaussianity and the evolution of galaxy populations. Since 2005, we have been engaged in a comprehensive optical and near-infrared followup program (at wavelengths between 0.4 and 5 {\mu}m) to image high-significance SPT clusters, to measure their photometric redshifts, and to estimate the contamination rate of the candidate lists. These clusters are then used for various cosmological and astrophysical studies.Comment: For TAUP 2011 proceeding

    Moving from evidence-based medicine to evidence-based health.

    Get PDF
    While evidence-based medicine (EBM) has advanced medical practice, the health care system has been inconsistent in translating EBM into improvements in health. Disparities in health and health care play out through patients' limited ability to incorporate the advances of EBM into their daily lives. Assisting patients to self-manage their chronic conditions and paying attention to unhealthy community factors could be added to EBM to create a broader paradigm of evidence-based health. A perspective of evidence-based health may encourage physicians to consider their role in upstream efforts to combat socially patterned chronic disease

    Astrometry with Hubble Space Telescope: A Parallax of the Fundamental Distance Calibrator RR Lyrae

    Get PDF
    We present an absolute parallax and relative proper motion for the fundamental distance scale calibrator, RR Lyr. We obtain these with astrometric data from FGS 3, a white-light interferometer on HST. We find πabs=3.82±0.2\pi_{abs} = 3.82 \pm 0.2 mas. Spectral classifications and VRIJHKT2_2M and DDO51 photometry of the astrometric reference frame surrounding RR Lyr indicate that field extinction is low along this line of sight. We estimate =0.07\pm0.03 for these reference stars. The extinction suffered by RR Lyr becomes one of the dominant contributors to the uncertainty in its absolute magnitude. Adopting the average field absorption, =0.07 \pm 0.03, we obtain M_V^{RR} = 0.61 ^{-0.11}_{+0.10}. This provides a distance modulus for the LMC, m-M = 18.38 - 18.53^{-0.11}_{+0.10} with the average extinction-corrected magnitude of RR Lyr variables in the LMC, , remaining a significant uncertainty. We compare this result to more than 80 other determinations of the distance modulus of the LMC.Comment: Several typos corrected. To appear in The Astronomical Journal, January 200
    • …
    corecore