851 research outputs found
Towards a Knowledge Graph Representation of FAIR Music Content for Exploration and Analysis
This paper introduces the ontological model for a FAIR digital library of music documents which takes into account a variety of music-related information, among which editorial information on documents and their production workflow as well as the score content and licensing information. The model is complemented with annotations (e.g. comments, fingering) on music documents produced by end-users, capable to add a social layer over the framework which enables the building of user-centric music applications. As a result, a machine-understandable knowledge graph of music content is defined, which can be queried, navigated and explored. On top of this, novel applications could be designed, like semantic workplaces where music scholars and musicians can find, analyse, compare, annotate and manipulate musical objects
Clinical phenotypes of SARS-CoV-2 : implications for clinicians and researchers
Patients with COVID-19 present a broad spectrum of clinical presentation. Whereas hypoxaemia is the marker of severity, different strategies of management should be customised to five specific individual phenotypes. Many intubated patients present with phenotype 4, characterised by pulmonary hypoxic vasoconstriction, being associated with severe hypoxaemia with "normal" (>40 mL·cmH2O-1) lung compliance and likely representing pulmonary microvascular thrombosis. Phenotype 5 is often associated with high plasma procalcitonin and has low pulmonary compliance, Which is a result of co-infection or acute lung injury after noninvasive ventilation. Identifying these clinical phenotypes and applying a personalised approach would benefit the optimisation of therapies and improve outcomes
A novel process for recovery and exploitation of polyesters and polyamides from waste polymeric artifacts
Plastic waste is one of the world's biggest sources of pollution. Despite the growing trend towards recycling, there are currently no effective technologies to offset the continuous increase in plastic production. Polyesters and polyamides are among the most widely produced single-use plastics, mainly used in the manufacture of textiles and soft drink bottles. Currently, only a small proportion of these polymers can be effectively recycled. The two primary methods employed for this purpose are mechanical and chemical recycling. Presently, mechanical recycling remains the more widely adopted process within the industrial sector. However, the treatment process is limited to a narrow range of waste materials as it is impossible to remove dyes and the mechanical properties deteriorate due to incompatibility between different plastic materials. Another critical limit of this recycling technology is the limited number of recycling loops that can be done due to the thermal degradation that occurs during the extrusion process. The alternative option is chemical recycling, which allows the depolymerization of the original product to recover the monomers directly. The main drawbacks are the long reaction times and the many solvents needed to achieve high-purity products. As a results, chemical recycling is only economically feasible for large companies that can produce the virgin polymer in situ. In this work, a new technology has been patented. This process consists of three main steps. The first one is the distillation-assisted cyclodepolymerization (DA-CDP), introduced as a modification of the CDP process. In this unit, cyclic oligomers together with high molecular weight compounds are produced. Then, after polymer purification, it is possible to achieve the same molecular weight as the initial polymer in less than 30 min, exploiting the ring-opening polymerization (ROP) of the next step
Modeling of the degradation of poly(ethylene glycol)-co-(lactic acid)-dimethacrylate hydrogels
Because of their similarity with extracellular matrix, hydrogels are ideal substrates for cell growth. Hydrogels made of synthetic polymers are excellent alternatives to natural ones and offer the key advantage of precisely controllable degradation times. In this work, hydrogels have been prepared from modified poly(ethylene glycol) macromonomers, functionalized on both ends first with a few lactic acid units, and then with methacrylate groups. A library of hydrogels has been prepared using free- radical polymerization of the macromonomers, by changing both the macromonomer concentration and their type, i.e., the number of lactic acid repeating units. The degradation kinetics of these hydrogels, caused by the hydrolysis of the lactic acid units, have been carefully monitored in terms of swelling ratio, mass loss, and Young’s modulus. A complete mathematical model, accounting for hydrogel degradation, swelling, and reverse gelation, has been developed and used to predict all the measured quantities until complete disappearance of the gels. The model is capable of accurately predicting the time evolution of all the properties investigated experimentally. To the best of our knowledge, this is the first study where such a systematic comparison between model predictions and experimental data is presented
Adipose-derived stem/stromal cells in kidney transplantation: Status quo and future perspectives
Kidney transplantation (KT) is the gold standard treatment of end-stage renal disease. Despite progressive advances in organ preservation, surgical technique, intensive care, and immunosuppression, long-term allograft survival has not significantly improved. Among the many peri-operative complications that can jeopardize transplant outcomes, ischemia-reperfusion injury (IRI) deserves special consideration as it is associated with delayed graft function, acute rejection, and premature transplant loss. Over the years, several strategies have been proposed to mitigate the impact of IRI and favor tolerance, with rather disappointing results. There is mounting evidence that adipose stem/stromal cells (ASCs) possess specific characteristics that could help prevent, reduce, or reverse IRI. Immunomodulating and tolerogenic properties have also been suggested, thus leading to the development of ASC-based prophylactic and therapeutic strategies in pre-clinical and clinical models of renal IRI and allograft rejection. ASCs are copious, easy to harvest, and readily expandable in culture. Furthermore, ASCs can secrete extracellular vesicles (EV) which may act as powerful mediators of tissue repair and tolerance. In the present review, we discuss the current knowledge on the mechanisms of action and therapeutic opportunities offered by ASCs and ASC-derived EVs in the KT setting. Most relevant pre-clinical and clinical studies as well as actual limitations and future perspective are highlighted
FIC/FEM formulation with matrix stabilizing terms for incompressible flows at low and high Reynolds numbers
The final publication is available at Springer via http://dx.doi.org/10.1007/s00466-006-0060-yWe present a general formulation for incompressible fluid flow analysis using the finite element method. The necessary stabilization for dealing with convective effects and the incompressibility condition are introduced via the Finite Calculus method using a matrix form of the stabilization parameters. This allows to model a wide range of fluid flow problems for low and high Reynolds numbers flows without introducing a turbulence model. Examples of application to the analysis of incompressible flows with moderate and large Reynolds numbers are presented.Peer ReviewedPostprint (author's final draft
- …