155 research outputs found
Il catalogo SBN vs il modello FRBR? Lâesperienza della Rete bibliotecaria di Romagna e San Marino
Negli ultimi quindici anni, il modello concettuale di FRBR ha influenzato le riflessioni dei bibliotecari di tutto il mondo, animando il dibattito sulla revisione degli standard catalografici e non solo. A livello internazionale, non sono mancati tentativi né di adattare il modello ai cataloghi preesistenti né di realizzare software che rispondessero alle logiche di FRBR.
In Italia, al contrario, quello della Rete bibliotecaria di Romagna e San Marino rappresenta, sicuramente, il primo progetto concreto di âFRBR-izzazioneâ di un catalogo SBN.
La Rete, giĂ in passato, Ăš stata protagonista della sperimentazione di nuovi servizi e nuovi modelli di front-end, nella convinzione che lâutente e le sue necessitĂ rappresentino il principale core business delle biblioteche. Nellâarticolo â raccontando lâesperienza romagnola â si dimostra come alla domanda, forse un poâ ambiziosa, âsi puĂČ âFRBR-izzareâ un catalogo SBN?â, si possa rispondere positivamente, nonostante le criticitĂ e le rigiditĂ della struttura del catalogo SBN
A multimodal imaging approach for quantitative assessment of epilepsy
Le tecniche di coregistrazione elettroencefalogramma-risonanza magnetica funzionale (EEG-fMRI) ed EEG ad alta densitĂ (hdEEG) consentono di mappare attivazioni cerebrali anomale evocate da processi epilettici. LâEEG-fMRI Ăš una tecnica di imaging non invasivo che permette la localizzazione delle variazioni del livello di ossigenazione nel sangue presente nelle regioni irritative (segnale BOLD). Diversamente, lâanalisi di sorgente stima, a partire da un potenziale elettrico misurato sullo scalpo (EEG), la densitĂ di corrente della sorgente elettrica a livello corticale producendo una plausibile localizzazione del dipolo nelle regioni irritative. Lo scopo di questa tesi Ăš quello di sviluppare un approccio multimodale attraverso lâuso di dati di coregistrazione EEG-fMRI e hdEEG al fine di localizzare lâattivitĂ epilettica e verificare lâaffidabilitĂ sia dellâattivazione BOLD che della localizzazione della sorgente.
Nel Capitolo I si introduce il concetto di approccio multimodale. Il capitolo Ăš suddiviso principalmente in due parti: la prima descrive la tecnica di coregistrazione EEG-fMRI e la seconda la tecnica di localizzazione della sorgente in epilessia. La prima parte consiste in una breve analisi delle basi fisiologiche del dato di coregistrazione EEG-fMRI, nella descrizione di tecniche di registrazione simultanea e nellâintroduzione del metodo convenzionale di analisi dei dati. Sono inoltre descritti problemi tecnici, problemi di sicurezza, modalitĂ di scansione e strategie di rimozione degli artefatti EEG. Ă quindi presentata una panoramica sullo stato dellâarte delle coregistrazioni EEG-fMRI con discussione dei problemi aperti riguardanti lâanalisi convenzionale. La seconda parte introduce i principi di base della stima delle sorgenti da dati hdEEG ed i loro limiti.
Il primo capitolo fornisce un quadro generale, mentre i due capitoli successivi sono dedicati ad introdurre approcci di tipo diverso. Nellâanalisi convenzionale di dati EEG-fMRI, lâapparizione di eventi interictali (IED) guida lâanalisi dei dati fMRI. Il neurologo identifica gli intervalli degli eventi IED, che sono rappresentati da unâonda quadra, e successivamente questo protocollo viene convoluto con una risposta emodinamica (HRF) canonica per la costruzione di un modello o regressore da impiegare nellâanalisi con modelli lineari generalizzati (GLM). I problemi principali dellâanalisi convenzionale consistono nel fatto che essa non Ăš automatica, ossia soffre di soggettivitĂ nella classificazione degli IED, e che, se la scelta dellâHRF non Ăš ottimale, lâattivazione puĂČ essere sovra o sotto stimata. Il nuovo metodo proposto integra nellâanalisi GLM convenzionale due nuove funzioni: il regressore basato sul segnale EEG (Capitolo II), e lâindividuazione di una risposta emodinamica individual-based (ibHRF) (Capitolo III).
Nel Capitolo IV le prestazioni del nuovo metodo per lâanalisi di dati EEG-fMRI sono validate su dati in silico. A questo scopo sono stati creati dati fMRI simulati per testare la scelta dellâHRF ottima tra cinque modelli: quattro standard ed un modello HRF individual-based. Le prestazioni del metodo sono state valutate utilizzando come selezione il criterio di Akaike. Le simulazioni dimostrano la superioritĂ del nuovo metodo rispetto a quelli convenzionali e mostrano come la variazione del modello HRF influisce sui risultati dellâanalisi statistica.
Il Capitolo V introduce un criterio automatico volto a separare le componenti del segnale fMRI relative a network interni dal rumore. Dopo il processo di decomposizione probabilistico delle componenti indipendenti (PICA), si seleziona il numero ottimale di componenti applicando un nuovo algoritmo che tiene conto, per ciascuna componente, dei valori medi delle mappe spaziali di attivazione seguito da passaggi di clustering, segmentazione ed analisi spettrale. Confrontando i risultati dellâidentificazione visiva dei network neuronali con i risultati di quella automatica, lâalgoritmo mostra elevata accuratezza e precisione. In questo modo, il metodo di selezione automatica permette di separare ed individuare i network in stato di riposo, riducendo la soggettivitĂ nella valutazione delle componenti indipendenti.
Nel Capitolo VI sono descritti il design sperimentale e lâanalisi dei dati reali. Il capitolo illustra i risultati di dodici pazienti epilettici, concentrandosi sullâattivitĂ BOLD, sulla localizzazione della sorgente e sulla concordanza con il quadro clinico del paziente. Lo scopo Ăš quello di applicare un approccio multimodale che combini tecniche non invasive di acquisizione ed analisi. Sequenze di EEG standard e fMRI sono acquisite nel corso della stessa sessione di scansione. Lâanalisi dei dati EEG-fMRI Ăš eseguita utilizzando lâapproccio GLM tradizionale, il nuovo approccio e lâanalisi PICA. La sorgente dellâattivitĂ epilettica Ăš stimata a partire da tracciati EEG a 256-canali. Lâattivazione BOLD Ăš confrontata con la ricostruzione della sorgente EEG. Questi risultati sono infine confrontati con lâattivitĂ epilettica definita da EEG standard ed esiti clinici.
La combinazione di tecniche multimodali ed i loro rispettivi metodi di analisi sono strumenti utili per creare un workup prechirurgico completo dellâepilessia, fornendo diversi metodi di localizzazione dello stesso focolaio epilettico. Lâapproccio non invasivo di integrazione multimodale di dati EEG-fMRI e hdEEG sembra essere uno strumento molto promettente per lo studio delle scariche epilettiche.Electroencephalography-functional magnetic resonance imaging (EEG-fMRI) coregistration and high density EEG (hdEEG) can be combined to noninvasively map abnormal brain activation elicited by epileptic processes. EEG-fMRI can provide information on the pathophysiological processes underlying interictal activity, since the hemodynamic changes are a consequence of the abnormal neural activity generating interictal epileptiform discharges (IEDs). The source analysis estimates the current density of the source that generates a measured electric potential and it yields a plausible dipole localization of irritative regions. The aim of this thesis is to develop a multimodal approach with hdEEG and EEG-fMRI coregistration in order to localize the epileptic activity and to verify the reliability of source localization and BOLD activation.
In Chapter I the multimodal approach is introduced. The chapter is divided in two main parts: the first is based on EEG-fMRI coregistration and the second on the source localization in epilepsy. The first part consists of a brief review of the physiologic basis of EEG and fMRI and the technical basics of simultaneous recording, examining the conventional method for EEG-fMRI data. Technical challenges, safety issues, scanning modalities and EEG artifact removal strategies are also described. An overview of the state of EEG-fMRI is presented and the open problems of conventional analysis are discussed. The second part introduces the basic principles of the source estimation from EEG data in epilepsy and their limitations.
The first chapter provides a general framework. The next two are devoted to introduce different approaches. Conventional analysis of EEG-fMRI data relies on spike-timing of epileptic activity: the neurologist identifies the intervals of the IEDs events, as represented by a square wave; this protocol is then convolved with a canonical hemodynamic response function (HRF) to construct a model for the general linear model (GLM) analysis. There are limitations to the technique, however. The conventional analysis is not automatic, suffers of subjectivity in IEDs classification, and using a suboptimal HRF to model the BOLD response the activation map may result over or under estimated. The novel method purposed integrates in the conventional GLM two new features: the regressor based on the EEG signal (Chapter II) and the individual-based hemodynamic response function (ibHRF) (Chapter III).
In Chapter IV the performance of the novel method of EEG-fMRI data was tested on in silico data. Simulated fMRI datasets were created and used for the choice of the optimal HRF among five models: four standard and an individual-based HRF models. The performance of the method was evaluated using the Akaike information criterion as selection. Simulations would demonstrate the superiority of the novel method compared with the conventional ones and assess how the variations in HRF model affect the results of the statistical analysis.
Chapter V introduces an automatic criterion aiming to separate in fMRI data the signal related to an internal network from the noise. After the decomposition process (probabilistic independent component analysis [PICA]), the optimal number of components was selected by applying a novel algorithm which takes into account, for each component, the mean values of the spatial activation maps followed by clustering, segmentation and spectral analysis steps. Comparing visual and automatic identification of the neuronal networks, the algorithm demonstrated high accuracy and precision. Thus, the automatic selection method allows to separate and detect the resting state networks reducing the subjectivity of the independent component assessment.
In Chapter VI experimental design and analysis on real data are described. The chapter focuses on BOLD activity, source localization and agreement with the clinical history of twelve epileptic patients. The scope is to apply a multimodal approach combining noninvasive techniques of acquisition and analysis. Standard EEG and fMRI data were acquired during a single scanning session. The analysis of EEG-fMRI data was performed by using both the conventional GLM, the new GLM and the PICA. Source localization of IEDs was performed using 256-channels hdEEG. BOLD localizations were then compared to the EEG source reconstruction and to the expected epileptic activity defined by standard EEG and clinical outcome.
The combination of multimodal techniques and their respectively methods of analysis are useful tools in the presurgical workup of epilepsy providing different methods of localization of the same epileptic foci. Furthermore, the combined use of EEG-fMRI and hdEEG offers a new and more complete approach to the study of epilepsy and may play an increasingly important role in the evaluation of patients with refractory focal epilepsy
Graph analysis of TMSâEEG connectivity reveals hemispheric differences following occipital stimulation
(1) Background: Transcranial magnetic stimulation combined with electroencephalography (TMSâEEG) provides a unique opportunity to investigate brain connectivity. However, possible hemispheric asymmetries in signal propagation dynamics following occipital TMS have not been investigated. (2) Methods: Eighteen healthy participants underwent occipital single-pulse TMS at two different EEG sites, corresponding to early visual areas. We used a state-of-the-art Bayesian estimation approach to accurately estimate TMS-evoked potentials (TEPs) from EEG data, which has not been previously used in this context. To capture the rapid dynamics of information flow patterns, we implemented a self-tuning optimized Kalman (STOK) filter in conjunction with the information partial directed coherence (iPDC) measure, enabling us to derive time-varying connectivity matrices. Subsequently, graph analysis was conducted to assess key network properties, providing insight into the overall network organization of the brain network. (3) Results: Our findings revealed distinct lateralized effects on effective brain connectivity and graph networks after TMS stimulation, with left stimulation facilitating enhanced communication between contralateral frontal regions and right stimulation promoting increased intra-hemispheric ipsilateral connectivity, as evidenced by statistical test (p < 0.001). (4) Conclusions: The identified hemispheric differences in terms of connectivity provide novel insights into brain networks involved in visual information processing, revealing the hemispheric specificity of neural responses to occipital stimulation
Assessment of Event-Related EEG Power After Single-Pulse TMS in Unresponsive Wakefulness Syndrome and Minimally Conscious State Patients
In patients without a behavioral response, non-invasive techniques and new methods of data analysis can complement existing diagnostic tools by providing a method for detecting covert signs of residual cognitive function and awareness. The aim of this study was to investigate the brain oscillatory activities synchronized by single-pulse transcranial magnetic stimulation (TMS) delivered over the primary motor area in the time\u2013frequency domain in patients with the unresponsive wakefulness syndrome or in a minimally conscious state as compared to healthy controls. A time\u2013frequency analysis based on the wavelet transform was used to characterize rapid modifications of oscillatory EEG rhythms induced by TMS in patients as compared to healthy controls. The pattern of EEG changes in the patients differed from that of healthy controls. In the controls there was an early synchronization of slow waves immediately followed by a desynchronization of alpha and beta frequency bands over the frontal and centro-parietal electrodes, whereas an opposite early synchronization, particularly over motor areas for alpha and beta and over the frontal and parietal electrodes for beta power, was seen in the patients. In addition, no relevant modification in slow rhythms (delta and theta) after TMS was noted in patients. The clinical impact of these findings could be relevant in neurorehabilitation settings for increasing the awareness of these patients and defining new treatment procedures
Editorial: Chasing brain dynamics at their speed: what can time-varying functional connectivity tell us about brain function?
In the past decades, the growing field of network neuroscience has opened new perspectives on the study of the brain and its function. The integration of tools from network analysis and system neuroscience has allowed researchers to explore the properties of brain networks, offering a valuable alternative to traditional methods based on simple subtraction and mass univariate analysis (Sporns, 2010; Behrens and Sporns, 2012). This has led to an exponential growth of connectivity algorithms and methods designed to capture the intrinsic dynamics of human brain networks, both at rest and during active tasks. As a result, a new research direction has emerged. The quantification of spatio-temporal dynamics of functional connectivity (FC) is offering new means to observe a vast repertoire of brain functions. Despite significant advances in this domain, there are still major challenges to address. This is partly due to the rapid and distributed nature of brain interactions, with large-scale networks that constantly evolve and coordinate activity to produce human perception, cognition, and behavior at sub-second timescales. Additionally, brain network activity can vary widely within and across individuals (Finn et al., 2015; Van De Ville et al., 2021), as well as in clinical conditions and brain disorders (see Miao et al.). Thus, modeling whole-brain network dynamics, accounting for the necessary spatial and temporal resolution at both individual and population levels, remains a crucial goal yet to be fully achieved. The present Research Topic contains a collection of methodological and empirical studies that touch upon some of the main challenges in the field, collectively providing insight into the current state of research and the potential solutions for advancing the field of dynamic network neuroscience in the future
Evaluation of analytical performance of a novel immunoenzymometric assay for cTnI
Letter to the Editor. We evaluated the analytical performance of the immunoenzymometric
assay for the cTnI, named ST AIA-PACK cTnI 3rd-Gen,
using the automated AIA-2000 platform (Tosoh Corporation, Tokyo,
Japan). This method is a two-site immunoenzymometric assay, which
uses a combination of two monoclonal antibodies, respectively directed
to 41â49 and 87â91 amino acids of the cTnI peptide chain, and the ternary
troponin ITC complex as a calibration antigen [1]
Neurophysiological and BOLD signal uncoupling of giant somatosensory evoked potentials in progressive myoclonic epilepsy: a case-series study
In progressive myoclonic epilepsy (PME), a rare epileptic syndrome caused by a variety of genetic disorders, the combination of peripheral stimulation and functional magnetic resonance imaging (fMRI) can shed light on the mechanisms underlying cortical dysfunction. The aim of the study is to investigate sensorimotor network modifications in PME by assessing the relationship between neurophysiological findings and blood oxygen level dependent (BOLD) activation. Somatosensory-evoked potential (SSEP) obtained briefly before fMRI and BOLD activation during median-nerve electrical stimulation were recorded in four subjects with typical PME phenotype and compared with normative data. Giant scalp SSEPs with enlarger N20-P25 complex compared to normal data (mean amplitude of 26.2\u2009\ub1\u20098.2\u2009\u3bcV after right stimulation and 27.9\u2009\ub1\u20093.7\u2009\u3bcV after left stimulation) were detected. Statistical group analysis showed a reduced BOLD activation in response to median nerve stimulation in PMEs compared to controls over the sensorimotor (SM) areas and an increased response over subcortical regions (p\u2009\u20092.3, corrected). PMEs show dissociation between neurophysiological and BOLD findings of SSEPs (giant SSEP with reduced BOLD activation over SM). A direct pathway connecting a highly restricted area of the somatosensory cortex with the thalamus can be hypothesized to support the higher excitability of these areas
Evaluation of analytical performance and comparison of clinical results of the new generation method AccuTnI+3 for the measurement of cardiac troponin I using both patients and quality control plasma samples
The study aims are to evaluate the analytical performance and the clinical results of the chemiluminescent Access
AccuTnI+3 immunoassay for the determination of cardiac troponin I (cTnI)with DxI 800 and Access2 platforms
and to compare the clinical results obtained with this method with those of three cTnI immunoassays, recently
introduced in the European market. The limits of blank (LoB), detection (LoD), and quantitation (LoQ) at 20%
CV and 10% CV were 4.5 ng/L and 10.9 ng/L, 17.1 and 30.4 ng/L, respectively. The results of STAT Architect high
Sensitive TnI (Abbott Diagnostics), ADVIA Centaur Troponin I Ultra (Siemens Healthcare Diagnostics), ST AIA-Pack
cTnI third generation (Tosoh Bioscience), and Access AccuTnI + 3 (Beckman Coulter Diagnostics) showed very
close correlations (R ranging from 0.901 to 0.994) in 122 samples of patients admitted to the emergency department.
However, on average there was a difference up to 2.4-fold between the method measuring the highest
(ADVIA method) and lowest cTnI values (AccuTnI + 3 method). The consensus mean values between methods
ranged from 6.2% to 29.6% in 18 quality control samples distributed in an external quality control study (cTnI
concentrations ranging from 29.3 ng/L to 1557.5 ng/L). In conclusion, the results of our analytical evaluation
concerning the AccuTnI + 3 method, using the DxI platform, are well in agreement with those suggested by the
manufacturer as well as those reported by some recent studies using the Access2 platform. Our results confirm
that the AccuTnI + 3 method for the Access2 and DxI 800 platforms is a clinically usable method for cTnI
measurement
Editorial: Brain-connectivity-based computer interfaces
Editorial on the Research Topic Brain-connectivity-based computer interface
- âŠ