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and Storti. This is an open-access article
distributed under the terms of the Creative
Commons Attribution License (CC BY). The use,
distribution or reproduction in other forums is
permitted, provided the original author(s) and
the copyright owner(s) are credited and that
the original publication in this journal is cited, in
accordance with accepted academic practice.
No use, distribution or reproduction is
permitted which does not comply with these
terms.

Editorial:
Brain-connectivity-based
computer interfaces

Ilaria Boscolo Galazzo1, Luca Tonin2,3, Aleksandar Miladinović4
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Editorial on the Research Topic

Brain-connectivity-based computer interfaces

Over the past few decades, brain-computer interfaces (BCIs) have undergone significant

expansion, driven by innovative methodologies and technological advancements. Among

the emerging methodologies that promote new BCI models, brain connectivity stands out.

These systems hold the potential to completely reshape the interactions with technology

and, importantly, to redefine our approach to addressing neurological conditions. BCIs

are primarily distinguished by their invasive or non-invasive recording methods, such as

electroencephalography (EEG), magnetoencephalography MEG, functional near-infrared

spectroscopy (fNIRS), functional magnetic resonance imaging (fMRI) and stereo EEG, as

well as their targeted applications.

In the medical field, BCIs hold a crucial role in communication and neurorehabilitation,

aiming to restore the ability to communicate or recover abilities that have been lost. This

mission is particularly important in the rehabilitation context, where interfaces can be used

to facilitate central functional recovery, especially for individuals recovering from stroke

(López-Larraz et al., 2018). The works of Liao et al. and de Seta et al. have taken steps in

this direction. Liao et al. have combined motor-imagery BCI (MI-BCI) with physiotherapy,

creating a synergy between technology and recovery methodologies. The central focus was to

probe whether the impact of MI-BCI varies with patient severity and if it provides universal

recovery benefits. To unveil the effectiveness of this innovative approach, the researchers

recruited a cohort of hospitalized ischemic stroke patients who exhibited motor deficits.

They used standard tests before and after the rehabilitation along with non-contrast CT

scans to assess the effects of high-density signs on the prognosis of stroke. The dynamic

changes in neural activity after stroke were mapped out using brain topographic maps.

The findings highlighted the superior performance of MI-BCI compared to conventional

rehabilitation methods.

BCIs should accommodate individual needs, using residual signals that can originate not

only from the brain but also from the muscles. These innovative technologies, called hybrid

BCIs (h-BCIs), bridge the gap between cerebral and muscular signals, as described by the

work of de Seta et al.. The authors have established a novel approach to enhance post-stroke

motor rehabilitation by focusing on cortico-muscular coupling (CMC) within a h-BCI.

Through a pseudo-online analysis involving both healthy and stroke subjects, the study
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optimizes CMC computation and its translation into movement

detection. This refinement, including adjusting CMC calculations

every 125ms and collecting two predictions before making a final

decision, greatly enhances both accuracy and speed, no matter

the type of movement. Importantly, the attempts and actual

movements of stroke patients are both classified using CMC-based

detection, achieving high accuracy and rapid classification. These

findings lay the groundwork for a novel non-invasive h-BCI design,

leveraging combined EEG and EMG connectivity patterns during

upper limb movement attempts.

While most of the ongoing research is focusing on upper

body movements, as demonstrated by the previously discussed

studies, it is important to mention that BCI techniques can also

target lower extremities, although decoding lower limb movements

from EEG brain signals is more challenging. As such, EEG for

lower extremity prosthetic control is currently rare (Lennon et al.,

2020). The study by Dillen et al. aims at making a step forward

in this respect and proposes different data-driven approaches to

investigate the feasibility of lower limb BCI in participants with

an amputation and able-bodied participants performing lower limb

movements. Different machine learning (ML) methods are tested,

such as random forest, logistic regression, and linear discriminant

analysis, each combined with a series of features based on power

spectral density, common spatial patterns and xDAWN algorithm.

The authors demonstrate that EEG can be reliably used as a control

signal for lower limb prostheses in BCIs, with random forest

methods appearing as the best classifier choice in most of the cases

and common spatial patterns as the most suitable feature extraction

method. Further integrating EEG with other signals (as EMG)

could be of high interest for designing accurate h-BCI systems

targeting lower limb prosthetic device control.

In this panorama, the recent introduction of the brain

connectivity concept, borrowed from the fields of neurophysiology

and neuroimaging, has led to a revolution and substantial

enhancement in brain-device communication, albeit still

accompanied by several usability challenges, particularly in real-

time scenarios (Behrens and Sporns, 2012; Finn et al., 2015; Siviero

et al., 2023). The quantification of brain connectivity assumes

different forms, allowing for the assessment of relationships among

distinct brain regions, as well as between the brain and other parts

of the body, muscles included. This can be exemplified thought

functional and effective connectivity analyses. The former involves

assessing the temporal correlation of activity between different

brain areas. The latter, demonstrated by techniques like Granger

causality or dynamic causal modeling, explores the directional

influence that one brain region exerts over another. Their use

has facilitated the selection of a wider set of features, which not

only describe the functionality of brain regions but also capture

their intricate interactions. These features have proven pivotal in

decoding cerebral functions and subsequently translating them

into active commands through the BCI interface (Hamedi et al.,

2016; Brusini et al., 2021). For example, the analysis of brain

connections empowers BCIs to discern specific activity patterns

linked to finer or more complex movements. This holds particular

significance for real-time command classification. Another pivotal

aspect concerns the integration of dynamic connectivity, both

in a general sense and when applied to the connectivity metrics

themselves. This encompasses an exploration of how connections

between distinct brain areas evolve over time. Consequently,

BCIs have gained the ability to adapt to shifts in brain function,

amplifying their effectiveness in comprehending user commands

as time progresses.

Connectivity-based features are also relevant in neurofeedback

training applications. These allow self-regulation of one’s own brain

activity by providing feedback and reward signals, representing

one of the earliest and simplest applications of BCI systems

(Birbaumer et al., 2009). Neurofeedback has been increasingly

suggested as a potential complementary therapy in different

disorders, including epilepsy, attention deficit disorder, depression,

and schizophrenia (Marzbani et al., 2016). However, as outlined

by Trambaiolli et al., not all the individuals will benefit from

neurofeedback training, and it is thus essential to identify potential

predictors of performance and outcomes. Through their study,

authors combine functional connectivity (FC) features from

simultaneous EEG and fNIRS recordings to predict participants’

performance in an fNIRS-based affective neurofeedback task on

healthy participants. Their results provide evidence of the feasibility

of usingmultimodal FC predictors for neurofeedback performance,

revealing good prediction accuracy and demonstrating good

agreement between resting-state FC connectomes derived from

different functional modalities.

Currently, brain connectivity and network analysis on EEG

data have experienced rapid advancement, from simple temporal

correlations among brain regions to complexmodels encompassing

dynamic and causal effects. However, as spatial and temporal

precision improve, data dimensionality increases, intensifying

the challenges of analysis. Furthermore, the modeling of brain

networks is complex due to non-linear neuronal interactions,

sometimes eluding traditional linear models. Although advanced

ML and deep learning (DL) methods appear promising for such

purpose and for dealing with high dimensionality, the intrinsically

noisy, sparse, and non-stationary nature of EEG data imposes

several limitations. Moreover, many ML/DL approaches often lack

transparency and frequently remain as “black boxes”, generating

results without explanations. Therefore, the current development

and use of explainable artificial intelligence (XAI) is highly relevant,

allowing users to better understand how models make decisions

and increasing confidence in the system. However, the efficacy

of AI-based approaches comes with a caveat. They require a

large amount of data for training, and this may represent a

substantial challenge within the BCI context, especially in clinical

and rehabilitative applications. In these scenarios, limited samples

sizes and the need to adapt the system to each user are peculiar.

To overcome such limitations, several potential solutions could be

considered. For instance, leveraging publicly available data could

partiallymitigate the data scarcity issue. Similarly, using approaches

such as transfer learning could be useful in addressing this problem

allowing the transfer of knowledge from domains with a large

amount of data to those with more limited datasets (Lotte et al.,

2018).

To conclude, brain connectivity analysis, dimensionality

reduction, modeling of non-linear interactions, integration of

different data sources for h-BCI, individually-tailored systems and

the pursuit of transparent AI represent essential topics to further

explore that all converge in current BCI research, with a greater

challenge lying in achieving real-time implementations.
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