
TYPE Editorial

PUBLISHED 13 June 2023

DOI 10.3389/fnins.2023.1223955

OPEN ACCESS

EDITED AND REVIEWED BY

Vince D. Calhoun,

Georgia State University, United States

*CORRESPONDENCE

David Pascucci

david.pascucci@epfl.ch

RECEIVED 16 May 2023

ACCEPTED 30 May 2023

PUBLISHED 13 June 2023

CITATION

Rubega M, Storti SF and Pascucci D (2023)

Editorial: Chasing brain dynamics at their

speed: what can time-varying functional

connectivity tell us about brain function?

Front. Neurosci. 17:1223955.

doi: 10.3389/fnins.2023.1223955

COPYRIGHT

© 2023 Rubega, Storti and Pascucci. This is an

open-access article distributed under the terms

of the Creative Commons Attribution License

(CC BY). The use, distribution or reproduction

in other forums is permitted, provided the

original author(s) and the copyright owner(s)

are credited and that the original publication in

this journal is cited, in accordance with

accepted academic practice. No use,

distribution or reproduction is permitted which

does not comply with these terms.

Editorial: Chasing brain dynamics
at their speed: what can
time-varying functional
connectivity tell us about brain
function?

Maria Rubega1, Silvia Francesca Storti2 and David Pascucci3*

1Section of Rehabilitation, Department of Neuroscience, University of Padua, Padua, Italy, 2Department

of Engineering for Innovation Medicine, University of Verona, Verona, Italy, 3Laboratory of

Psychophysics, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland

KEYWORDS

brain networks, neural networks, EEG, fMRI, dynamic functional connectivity, dFC

Editorial on the Research Topic

Chasing brain dynamics at their speed: what can time-varying functional

connectivity tell us about brain function?

In the past decades, the growing field of network neuroscience has opened new

perspectives on the study of the brain and its function. The integration of tools from

network analysis and system neuroscience has allowed researchers to explore the properties

of brain networks, offering a valuable alternative to traditional methods based on simple

subtraction and mass univariate analysis (Sporns, 2010; Behrens and Sporns, 2012). This has

led to an exponential growth of connectivity algorithms and methods designed to capture

the intrinsic dynamics of human brain networks, both at rest and during active tasks.

As a result, a new research direction has emerged. The quantification of spatio-temporal

dynamics of functional connectivity (FC) is offering new means to observe a vast repertoire

of brain functions.

Despite significant advances in this domain, there are still major challenges to address.

This is partly due to the rapid and distributed nature of brain interactions, with large-

scale networks that constantly evolve and coordinate activity to produce human perception,

cognition, and behavior at sub-second timescales. Additionally, brain network activity can

vary widely within and across individuals (Finn et al., 2015; Van De Ville et al., 2021), as

well as in clinical conditions and brain disorders (see Miao et al.). Thus, modeling whole-

brain network dynamics, accounting for the necessary spatial and temporal resolution at

both individual and population levels, remains a crucial goal yet to be fully achieved.

The present Research Topic contains a collection of methodological and empirical

studies that touch upon some of the main challenges in the field, collectively providing

insight into the current state of research and the potential solutions for advancing the field

of dynamic network neuroscience in the future.

Frontiers inNeuroscience 01 frontiersin.org

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2023.1223955
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2023.1223955&domain=pdf&date_stamp=2023-06-13
mailto:david.pascucci@epfl.ch
https://doi.org/10.3389/fnins.2023.1223955
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fnins.2023.1223955/full
https://www.frontiersin.org/research-topics/34359/chasing-brain-dynamics-at-their-speed-what-can-time-varying-functional-connectivity-tell-us-about-brain-function?
https://doi.org/10.3389/fnins.2022.987223
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Rubega et al. 10.3389/fnins.2023.1223955

FIGURE 1

The figure depicts one of several potential pipelines for studying dynamic functional connectivity (dFC). The sequence of panels highlights some of

the major challenges, starting from the integration of data from di�erent modalities (such as EEG and fMRI) to the definition of regions of interest

(ROI) and the derivation of time-varying connectivity matrices. An essential final step involves techniques to condense and extract meaningful

insights from high-dimensional connectivity matrices. This can involve employing network analysis using traditional graph metrics, as well as by

leveraging AI methods that utilize cross-validation techniques and generative AI models (refer to the main text).

The trade-o� between spatial and
temporal resolution

Brain network research requires the use of various

neurophysiological and neuroimaging approaches, each with

unique strengths and weaknesses. The choice of methodology

often depends on the research question, portability, and cost, and

is typically affected by a trade-off between the spatial and temporal

resolution offered by different imaging data types.

Electroencephalography (EEG), due to its high temporal

resolution, has the potential to capture non-stationary dynamics

in neural activity, including rapid changes that occur on the
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millisecond scale, such as the timing of individual spikes or

synchronization/desynchronization of oscillatory activity across

different brain regions. There have been significant developments

and enhancements to connectivity analysis using EEG inverse

solutions. However, EEG and inverse solutions provide limited

spatial resolution compared to functional magnetic resonance

imaging (fMRI), restricting the ability to pinpoint neural activity in

specific brain regions and interactions between nearby regions. On

the one hand, EEG analysis remains suboptimal for approaching

research questions that involve subcortical regions or the cerebellar

cortex, such as that in Pang et al., where the authors investigated

correlations between the language network in temporal lobe

epilepsy and the cerebellum. On the other hand, fMRI can provide

precise information about the location of neural activity within the

brain (including both cortical and subcortical brain areas). Despite

the limited temporal resolution of fMRI, which operates at the scale

of seconds, remarkable progress has been achieved in developing

methods to estimate time-varying connectivity networks or “brain

states” from fMRI data (Calhoun et al., 2014; Kringelbach and

Deco, 2020; Lurie et al., 2020; Pezzulo et al., 2021). Combining and

integrating EEG and fMRI through novel methods shows promise

to overcome the limitations of both techniques and benefit from

their advantages due to their non-invasive nature (Formaggio et al.,

2011; Hinne et al., 2014; Pascucci et al., 2022).

The curse of dimensionality

The techniques for analyzing, extracting, and interpreting brain

networks have evolved rapidly, progressing from simple temporal

correlation measures between multiple regions to more complex

linear and non-linear models that account for time-varying and

causal effects. FC is typically computed using bivariate correlations

and autoregressive models and is useful for both exploratory and

confirmatory research. Recent developments in FC have enabled

the estimation of time-frequency matrices that show direct and

directed interactions between brain networks (Chang and Glover,

2010; Sakoǧlu et al., 2010; Zhang et al.). This type of connectivity

is known as “time-varying” or “dynamic” functional connectivity

(dFC) and has been developed primarily, but not only, in the

domain of EEG source imaging (Milde et al., 2010; Storti et al., 2017;

Rubega et al., 2019; Pascucci et al., 2020).

However, as the level of detail increases, such as with time-

frequency matrices, the dimensionality of the data rises, sometimes

with matrices up to four dimensions, making analysis and

interpretation more challenging (see Figure 1). Therefore, a new

research avenue is focusing on developing methods that can

compress and reduce the dimensionality of FC matrices to extract

latent patterns and represent the results in a more tractable, lower

dimensional space, as shown in the study by Jia et al..

The challenge of modeling brain networks is further

compounded by the complex and highly non-linear nature of

neuronal interactions, which cannot always be accurately captured

by models assuming linear relationships such as correlation and

autoregressive models (Stephan et al., 2008). A potential solution

is the use of more advanced machine learning methods. However,

even deep convolutional neural networks, which are among the

traditional “gold standard” in deep learning, may not be optimal

for analyzing complex brain networks in EEG or fMRI data, due

to the inherent noise, sparsity and non-stationarity of imaging

data. Additionally, some machine learning methods, including

deep learning models, are often considered “black boxes” because

they do not provide any explanations or rationales for their

outcomes. Therefore, alternative approaches suggest moving

toward explainable artificial intelligence (XAI) methods to ensure

that models are transparent and understandable to end-users. To

address these issues, Lin et al. proposed a convolutional recurrent

neural network (CRNN) that can extract high-level features and

preserve sequential information in dFC networks. Alternatively,

graph neural networks (GNNs) offer a more flexible and realistic

approach, allowing for insights into FC between different regions

of interest. In particular, EEG- or fMRI-GNN can visualize and

learn connectivity between important nodes, addressing the issue

of interpretability. The comparison between CNN-based and

GNN-based methods is a relevant topic, but aspects such as the

choice of appropriate FC measures to define the brain graph still

need to be explored. A further advancement of this approach

involves using graph-generating networks (GGNs) instead of

pre-defined graphs, as proposed by Lin et al. for epilepsy research.

Hou et al. (2022) have also contributed to this area. Importantly, a

key aspect and potential limitation of using deep learning methods

is that they require a large amount of (unsupervised) data for

training to achieve good performance. This can be challenging

given the variety of tasks and small sample sizes typically used in

imaging studies.

Future directions

Brain network research foreshadows the possibility of gaining a

rich and physiologically grounded understanding of brain function

at the level of distributed and dynamic networks from which

it emerges. As a result, this field has attracted interest and

contributions from a variety of disciplines, serving as one of

the most compelling examples of the integration of imaging and

analysis techniques in contemporary neuroscience. However, this

has also highlighted the need to combine established and emerging

tools to improve the spatial and temporal resolution of brain data,

as well as to develop data reduction techniques. We anticipate these

to be at the forefront of research in the coming decades.
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