486 research outputs found

    Adipose-derived stem/stromal cells in kidney transplantation: Status quo and future perspectives

    Get PDF
    Kidney transplantation (KT) is the gold standard treatment of end-stage renal disease. Despite progressive advances in organ preservation, surgical technique, intensive care, and immunosuppression, long-term allograft survival has not significantly improved. Among the many peri-operative complications that can jeopardize transplant outcomes, ischemia-reperfusion injury (IRI) deserves special consideration as it is associated with delayed graft function, acute rejection, and premature transplant loss. Over the years, several strategies have been proposed to mitigate the impact of IRI and favor tolerance, with rather disappointing results. There is mounting evidence that adipose stem/stromal cells (ASCs) possess specific characteristics that could help prevent, reduce, or reverse IRI. Immunomodulating and tolerogenic properties have also been suggested, thus leading to the development of ASC-based prophylactic and therapeutic strategies in pre-clinical and clinical models of renal IRI and allograft rejection. ASCs are copious, easy to harvest, and readily expandable in culture. Furthermore, ASCs can secrete extracellular vesicles (EV) which may act as powerful mediators of tissue repair and tolerance. In the present review, we discuss the current knowledge on the mechanisms of action and therapeutic opportunities offered by ASCs and ASC-derived EVs in the KT setting. Most relevant pre-clinical and clinical studies as well as actual limitations and future perspective are highlighted

    Behavior in subcortical vascular dementia with sight pathologies: visual hallucinations as a consequence of precocious gait imbalance and institutionalization

    Get PDF
    Background: Subcortical vascular dementia (sVAD) is considered the most frequent dementia in old population, and it is due to a small vessel disease. It has a very specific nosography, where the dominant factors are dysexecutive functions, depression, and apathy. Very few studies described visual hallucinations in sVAD, apart from in the final stages of it. Methods: This study recruited 577 patients with a diagnosis of sVAD associated with major ocular pathologies and 1118 patients with sVAD without any significant ocular pathology: Patients were followed up for 24 months. We studied the influence of ocular pathologies in precocious visual hallucinations, on behavior disorder (aggressiveness), and gait disorders (instability, fells). We registered the necessity of neuropsychiatric therapies, incidence of hospitalization, and institutionalization. Results: What emerges from our study is that the ocular comorbidities might change the behavior profile of dementia, provoking behavioral alterations, and the need for therapies with adverse effects. As far as old age is a complicated status of life, many factors can modify its development. The possible contribution of multiple biological events cannot be neglected, particularly the underlying influence of chronic diseases as well as the geriatric conditions, per se, might compromise the cognitive functions and the pathological conditions. Ocular pathology as a superimposing event in sVAD might worse the outcome. A correct and rapid identification of critical patients might be relevant for the dynamic life events in these patients and their caregive

    PD-L1/PD-1 Pattern of Expression Within the Bone Marrow Immune Microenvironment in Smoldering Myeloma and Active Multiple Myeloma Patients

    Get PDF
    Background: The PD-1/PD-L1 axis has recently emerged as an immune checkpoint that controls antitumor immune responses also in hematological malignancies. However, the use of anti-PD-L1/PD-1 antibodies in multiple myeloma (MM) patients still remains debated, at least in part because of discordant literature data on PD-L1/PD-1 expression by MM cells and bone marrow (BM) microenvironment cells. The unmet need to identify patients which could benefit from this therapeutic approach prompts us to evaluate the BM expression profile of PD-L1/PD-1 axis across the different stages of the monoclonal gammopathies. Methods: The PD-L1/PD-1 axis was evaluated by flow cytometry in the BM samples of a total cohort of 141 patients with monoclonal gammopathies including 24 patients with Monoclonal Gammopathy of Undetermined Significance (MGUS), 38 patients with smoldering MM (SMM), and 79 patients with active MM, including either newly diagnosed or relapsed-refractory patients. Then, data were correlated with the main immunological and clinical features of the patients. Results: First, we did not find any significant difference between MM and SMM patients in terms of PD-L1/PD-1 expression, on both BM myeloid (CD14+) and lymphoid subsets. On the other hand, PD-L1 expression by CD138+ MM cells was higher in both SMM and MM as compared to MGUS patients. Second, the analysis on the total cohort of MM and SMM patients revealed that PD-L1 is expressed at higher level in CD14+CD16+ non-classical monocytes compared with classical CD14+CD16− cells, independently from the stage of disease. Moreover, PD-L1 expression on CD14+ cells was inversely correlated with BM serum levels of the anti-tumoral cytokine, IL-27. Interestingly, relapsed MM patients showed an inverted CD4+/CD8+ ratio along with high levels of pro-tumoral IL-6 and a positive correlation between Í14+PD-L1+ and Í8+PD-1+ cells as compared to both SMM and newly diagnosed MM patients suggesting a highly compromised immune-compartment with low amount of CD4+ effector cells. Conclusions: Our data indicate that SMM and active MM patients share a similar PD-L1/PD-1 BM immune profile, suggesting that SMM patients could be an interesting target for PD-L1/PD-1 inhibition therapy, in light of their less compromised and more responsive immune-compartment

    On the Advent of Super-Resolution Microscopy in the Realm of Polycomb Proteins

    Get PDF
    Simple Summary The genomes of metazoans are organized at multiple spatial scales, ranging from the double helix of DNA to whole chromosomes. The intermediate genomic scale of kilobases to megabases, which corresponds to the 50-300 nm spatial scale, is particularly interesting because the tridimensional arrangement of chromatin is implicated in multiple regulatory mechanisms. Indeed, a crucial hallmark of cellular life is the widespread ordering of many biological processes in nano-/mesoscopic domains (10-200 nm), which now may be revealed by an imaging toolbox referred to as super-resolution microscopy. In this context, polycomb proteins stand as major epigenetic modulators of chromatin function, acting prevalently as repressors of gene transcription. This work reviews the current state-of-the-art super-resolution microscopy applied to polycomb proteins. Of note, super-resolution data have complemented cutting-edge molecular biology methods in providing a rational framework for understanding how polycomb proteins may shape 3D chromatin topologies and functions. The genomes of metazoans are organized at multiple spatial scales, ranging from the double helix of DNA to whole chromosomes. The intermediate genomic scale of kilobases to megabases, which corresponds to the 50-300 nm spatial scale, is particularly interesting, as the 3D arrangement of chromatin is implicated in multiple regulatory mechanisms. In this context, polycomb group (PcG) proteins stand as major epigenetic modulators of chromatin function, acting prevalently as repressors of gene transcription by combining chemical modifications of target histones with physical crosslinking of distal genomic regions and phase separation. The recent development of super-resolution microscopy (SRM) has strongly contributed to improving our comprehension of several aspects of nano-/mesoscale (10-200 nm) chromatin domains. Here, we review the current state-of-the-art SRM applied to PcG proteins, showing that the application of SRM to PcG activity and organization is still quite limited and mainly focused on the 3D assembly of PcG-controlled genomic loci. In this context, SRM approaches have mostly been applied to multilabel fluorescence in situ hybridization (FISH). However, SRM data have complemented the maps obtained from chromosome capture experiments and have opened a new window to observe how 3D chromatin topology is modulated by PcGs

    Fear of the unknown: a pre-departure qualitative study of Turkish international students

    Get PDF
    This paper presents findings from eleven in-depth interviews with Turkish undergraduate students, who were, by the time of data collection, about to spend a semester at a European university under the Erasmus exchange scheme. The students all agreed to be interviewed about their feelings about studying in a foreign culture, and were found to be anxious prior to departure about the quality of accommodation in the new destination, their language ability and the opportunity to form friendships. Fears were expressed about possible misconceptions over Turkey as a Muslim and a developing country. Suggestions are made for HEI interventions to allay student travellers’ concerns

    Application of next-generation sequencing for the genomic characterization of patients with smoldering myeloma

    Get PDF
    Genomic analysis could contribute to a better understanding of the biological determinants of the evolution of multiple myeloma (MM) precursor disease and an improved definition of high-risk patients. To assess the feasibility and value of next-generation sequencing approaches in an asymptomatic setting, we performed a targeted gene mutation analysis and a genome-wide assessment of copy number alterations (CNAs) by ultra-low-pass whole genome sequencing (ULP-WGS) in six patients with monoclonal gammopathy of undetermined significance and 25 patients with smoldering MM (SMM). Our comprehensive genomic characterization highlighted heterogeneous but substantial values of the tumor fraction, especially in SMM; a rather high degree of genomic complexity, in terms of both mutations and CNAs, and inter-patient variability; a higher incidence of gene mutations and CNAs in SMM, confirming ongoing evolution; intraclonal heterogeneity; and instances of convergent evolution. ULP-WGS of these patients proved effective in revealing the marked genome-wide level of their CNAs, most of which are not routinely investigated. Finally, the analysis of our small SMM cohort suggested that chr(8p) deletions, the DNA tumor fraction, and the number of alterations may have clinical relevance in the progression to overt MM. Although validation in larger series is mandatory, these findings highlight the promising impact of genomic approaches in the clinical management of SMM

    Pipeline Comparison for the Pre-Processing of Resting-State Data in Epilepsy

    Get PDF
    Noise removal is a critical step to recover the signal of interest from resting-state fMRI data. Several pre-processing pipelines have been developed mainly based on nuisance regression or independent component analysis. The aim of this work was to evaluate the ability in removing spurious non-BO LD signals of different cleaning pipelines when applied to a dataset of healthy controls and temporal lobe epilepsy patients. Increased tSNR and power spectral density in the resting-state frequency range (0.01-0.1 Hz) were found for all pre-processing pipelines with respect to the minimally pre-processed data, suggesting a positive gain in terms of temporal properties when optimal cleaning procedures are applied to the acquired fMRI data. All the pre-processing pipelines considered were able to recover the DMN through group ICA. By visually comparing this network across all the pipelines and groups, we found that AROMA, SPM12, FIX and FIXMC were able to better delineate the posterior cingulate cortex
    • 

    corecore