166 research outputs found

    One-Particle Measurement of the Antiproton Magnetic Moment

    Get PDF
    \DeclareRobustCommand{\pbar}{\HepAntiParticle{p}{}{}\xspace} \DeclareRobustCommand{\p}{\HepParticle{p}{}{}\xspace} \DeclareRobustCommand{\mup}{μp\mu_{p}{}{}\xspace} \DeclareRobustCommand{\mupbar}{\mu_{\pbar}{}{}\xspace} \DeclareRobustCommand{\muN}{μN\mu_N{}{}\xspace For the first time a single trapped \pbar is used to measure the \pbar magnetic moment {\bm\mu}_{\pbar}. The moment {\bm\mu}_{\pbar} = \mu_{\pbar} {\bm S}/(\hbar/2) is given in terms of its spin S{\bm S} and the nuclear magneton (\muN) by \mu_{\pbar}/\mu_N = -2.792\,845 \pm 0.000\,012. The 4.4 parts per million (ppm) uncertainty is 680 times smaller than previously realized. Comparing to the proton moment measured using the same method and trap electrodes gives \mu_{\pbar}/\mu_p = -1.000\,000 \pm 0.000\,005 to 5 ppm, for a proton moment μp=μpS/(/2){\bm{\mu}}_{p} = \mu_{p} {\bm S}/(\hbar/2), consistent with the prediction of the CPT theorem.Comment: 4 pages, 4 figures. arXiv admin note: substantial text overlap with arXiv:1201.303

    Prospects for precision measurements of atomic helium using direct frequency comb spectroscopy

    Full text link
    We analyze several possibilities for precisely measuring electronic transitions in atomic helium by the direct use of phase-stabilized femtosecond frequency combs. Because the comb is self-calibrating and can be shifted into the ultraviolet spectral region via harmonic generation, it offers the prospect of greatly improved accuracy for UV and far-UV transitions. To take advantage of this accuracy an ultracold helium sample is needed. For measurements of the triplet spectrum a magneto-optical trap (MOT) can be used to cool and trap metastable 2^3S state atoms. We analyze schemes for measuring the two-photon 23S43S2^3S \to 4^3S interval, and for resonant two-photon excitation to high Rydberg states, 23S33Pn3S,D2^3S \to 3^3P \to n^3S,D. We also analyze experiments on the singlet-state spectrum. To accomplish this we propose schemes for producing and trapping ultracold helium in the 1^1S or 2^1S state via intercombination transitions. A particularly intriguing scenario is the possibility of measuring the 11S21S1^1S \to 2^1S transition with extremely high accuracy by use of two-photon excitation in a magic wavelength trap that operates identically for both states. We predict a ``triple magic wavelength'' at 412 nm that could facilitate numerous experiments on trapped helium atoms, because here the polarizabilities of the 1^1S, 2^1S and 2^3S states are all similar, small, and positive.Comment: Shortened slightly and reformatted for Eur. Phys. J.

    Dedication in memoriam

    Get PDF

    Three Body Bound State in Non-Commutative Space

    Full text link
    The Bethe-Salpeter equation in non-commutative QED (NCQED) is considered for three-body bound state. We study the non-relativistic limit of this equation in the instantaneous approximation and derive the corresponding Schr\"{o}dinger equation in non-commutative space. It is shown that the experimental data for Helium atom puts an upper bound on the magnitude of the parameter of non-commutativity, θ109λe2\theta\sim10^{-9}\lambda_e^2.Comment: 10 pages, 3 figures, to appear in Phys. Rev.

    Trapped Antihydrogen in Its Ground State

    Get PDF
    Antihydrogen atoms are confined in an Ioffe trap for 15 to 1000 seconds -- long enough to ensure that they reach their ground state. Though reproducibility challenges remain in making large numbers of cold antiprotons and positrons interact, 5 +/- 1 simultaneously-confined ground state atoms are produced and observed on average, substantially more than previously reported. Increases in the number of simultaneously trapped antithydrogen atoms are critical if laser-cooling of trapped antihydrogen is to be demonstrated, and spectroscopic studies at interesting levels of precision are to be carried out

    A semiconductor laser system for the production of antihydrogen

    Get PDF
    Laser-controlled charge exchange is a promising method for producing cold antihydrogen. Caesium atoms in Rydberg states collide with positrons and create positronium. These positronium atoms then interact with antiprotons, forming antihydrogen. Las er excitation of the caesium atoms is essential to increase the cross section of the charge-exchange collisions. This method was demonstrated in 2004 by the ATRAP collaboration by using an available copper vapour laser. For a second generation of charge-e xchange experiments we have designed a new semiconductor laser system that features several improvements compared to the copper vapour laser. We describe this new laser system and show the results from the excitation of caesium atoms to Rydberg states wit hin the strong magnetic fields in the ATRAP apparatus

    Highly Charged Ions in Rare Earth Permanent Magnet Penning Traps

    Full text link
    A newly constructed apparatus at the National Institute of Standards and Technology (NIST) is designed for the isolation, manipulation, and study of highly charged ions. Highly charged ions are produced in the NIST electron-beam ion trap (EBIT), extracted through a beamline that selects a single mass/charge species, then captured in a compact Penning trap. The magnetic field of the trap is generated by cylindrical NdFeB permanent magnets integrated into its electrodes. In a room-temperature prototype trap with a single NdFeB magnet, species including Ne10+ and N7+ were confined with storage times of order 1 second, showing the potential of this setup for manipulation and spectroscopy of highly charged ions in a controlled environment. Ion capture has since been demonstrated with similar storage times in a more-elaborate Penning trap that integrates two coaxial NdFeB magnets for improved B-field homogeneity. Ongoing experiments utilize a second-generation apparatus that incorporates this two-magnet Penning trap along with a fast time-of-flight MCP detector capable of resolving the charge-state evolution of trapped ions. Holes in the two-magnet Penning trap ring electrode allow for optical and atomic beam access. Possible applications include spectroscopic studies of one-electron ions in Rydberg states, as well as highly charged ions of interest in atomic physics, metrology, astrophysics, and plasma diagnostics.Comment: Proceedings of CDAMOP-2011, 13-16 Dec 2011, Delhi, India. To be published by Springer Verla
    corecore