149 research outputs found

    Inflammation and endothelial function: Direct vascular effects of human C-reactive protein on nitric oxide bioavailability

    Get PDF
    Background - Circulating concentrations of the sensitive inflammatory marker C-reactive protein (CRP) predict future cardiovascular events, and CRP is elevated during sepsis and inflammation, when vascular reactivity may be modulated. We therefore investigated the direct effect of CRP on vascular reactivity. Methods and Results - The effects of isolated, pure human CRP on vasoreactivity and protein expression were studied in vascular rings and cells in vitro, and effects on blood pressure were studied in rats in vivo. The temporal relationship between changes in CRP concentration and brachial flow-mediated dilation was also studied in humans after vaccination with Salmonella typhi capsular polysaccharide, a model of inflammatory endothelial dysfunction. In contrast to some previous reports, highly purified and well-characterized human CRP specifically induced hyporeactivity to phenylephrine in rings of human internal mammary artery and rat aorta that was mediated through physiological antagonism by nitric oxide (NO). CRP did not alter endothelial NO synthase protein expression but increased protein expression of GTP cyclohydrolase-1, the rate-limiting enzyme in the synthesis of tetrahydrobiopterin, the NO synthase cofactor. In the vaccine model of inflammatory endothelial dysfunction in humans, increased CRP concentration coincided with the resolution rather than the development of endothelial dysfunction, consistent with the vitro findings; however, administration of human CRP to rats had no effect on blood pressure. Conclusions - Pure human CRP has specific, direct effects on vascular function in vitro via increased NO production; however, further clarification of the effect, if any, of CRP on vascular reactivity in humans in vivo will require clinical studies using specific inhibitors of CRP. © 2005 American Heart Association, Inc

    Docosahexaenoic Acid supplementation, vascular function and risk factors for cardiovascular disease: a randomized controlled trial in young adults

    Get PDF
    A high consumption of omega-3 long-chain polyunsaturated fatty acids, and particularly docosahexaenoic acid (DHA), has been suggested to reduce the risk of cardiovascular disease (CVD). However, while DHA supplementation may have benefits for secondary prevention, few studies have investigated the role of DHA in the primary prevention of CVD. Here, we tested the hypothesis that DHA supplementation improves endothelial function and risk factors for CVD

    One-Particle Measurement of the Antiproton Magnetic Moment

    Get PDF
    \DeclareRobustCommand{\pbar}{\HepAntiParticle{p}{}{}\xspace} \DeclareRobustCommand{\p}{\HepParticle{p}{}{}\xspace} \DeclareRobustCommand{\mup}{ÎŒp\mu_{p}{}{}\xspace} \DeclareRobustCommand{\mupbar}{\mu_{\pbar}{}{}\xspace} \DeclareRobustCommand{\muN}{ÎŒN\mu_N{}{}\xspace For the first time a single trapped \pbar is used to measure the \pbar magnetic moment {\bm\mu}_{\pbar}. The moment {\bm\mu}_{\pbar} = \mu_{\pbar} {\bm S}/(\hbar/2) is given in terms of its spin S{\bm S} and the nuclear magneton (\muN) by \mu_{\pbar}/\mu_N = -2.792\,845 \pm 0.000\,012. The 4.4 parts per million (ppm) uncertainty is 680 times smaller than previously realized. Comparing to the proton moment measured using the same method and trap electrodes gives \mu_{\pbar}/\mu_p = -1.000\,000 \pm 0.000\,005 to 5 ppm, for a proton moment ÎŒp=ÎŒpS/(ℏ/2){\bm{\mu}}_{p} = \mu_{p} {\bm S}/(\hbar/2), consistent with the prediction of the CPT theorem.Comment: 4 pages, 4 figures. arXiv admin note: substantial text overlap with arXiv:1201.303

    Prospects for precision measurements of atomic helium using direct frequency comb spectroscopy

    Full text link
    We analyze several possibilities for precisely measuring electronic transitions in atomic helium by the direct use of phase-stabilized femtosecond frequency combs. Because the comb is self-calibrating and can be shifted into the ultraviolet spectral region via harmonic generation, it offers the prospect of greatly improved accuracy for UV and far-UV transitions. To take advantage of this accuracy an ultracold helium sample is needed. For measurements of the triplet spectrum a magneto-optical trap (MOT) can be used to cool and trap metastable 2^3S state atoms. We analyze schemes for measuring the two-photon 23S→43S2^3S \to 4^3S interval, and for resonant two-photon excitation to high Rydberg states, 23S→33P→n3S,D2^3S \to 3^3P \to n^3S,D. We also analyze experiments on the singlet-state spectrum. To accomplish this we propose schemes for producing and trapping ultracold helium in the 1^1S or 2^1S state via intercombination transitions. A particularly intriguing scenario is the possibility of measuring the 11S→21S1^1S \to 2^1S transition with extremely high accuracy by use of two-photon excitation in a magic wavelength trap that operates identically for both states. We predict a ``triple magic wavelength'' at 412 nm that could facilitate numerous experiments on trapped helium atoms, because here the polarizabilities of the 1^1S, 2^1S and 2^3S states are all similar, small, and positive.Comment: Shortened slightly and reformatted for Eur. Phys. J.

    Trapped Antihydrogen in Its Ground State

    Get PDF
    Antihydrogen atoms are confined in an Ioffe trap for 15 to 1000 seconds -- long enough to ensure that they reach their ground state. Though reproducibility challenges remain in making large numbers of cold antiprotons and positrons interact, 5 +/- 1 simultaneously-confined ground state atoms are produced and observed on average, substantially more than previously reported. Increases in the number of simultaneously trapped antithydrogen atoms are critical if laser-cooling of trapped antihydrogen is to be demonstrated, and spectroscopic studies at interesting levels of precision are to be carried out

    A semiconductor laser system for the production of antihydrogen

    Get PDF
    Laser-controlled charge exchange is a promising method for producing cold antihydrogen. Caesium atoms in Rydberg states collide with positrons and create positronium. These positronium atoms then interact with antiprotons, forming antihydrogen. Las er excitation of the caesium atoms is essential to increase the cross section of the charge-exchange collisions. This method was demonstrated in 2004 by the ATRAP collaboration by using an available copper vapour laser. For a second generation of charge-e xchange experiments we have designed a new semiconductor laser system that features several improvements compared to the copper vapour laser. We describe this new laser system and show the results from the excitation of caesium atoms to Rydberg states wit hin the strong magnetic fields in the ATRAP apparatus

    Three Body Bound State in Non-Commutative Space

    Full text link
    The Bethe-Salpeter equation in non-commutative QED (NCQED) is considered for three-body bound state. We study the non-relativistic limit of this equation in the instantaneous approximation and derive the corresponding Schr\"{o}dinger equation in non-commutative space. It is shown that the experimental data for Helium atom puts an upper bound on the magnitude of the parameter of non-commutativity, Ξ∌10−9λe2\theta\sim10^{-9}\lambda_e^2.Comment: 10 pages, 3 figures, to appear in Phys. Rev.

    Finding Plastic Patches in Coastal Waters using Optical Satellite Data

    Get PDF
    Satellites collecting optical data offer a unique perspective from which to observe the problem of plastic litter in the marine environment, but few studies have successfully demonstrated their use for this purpose. For the first time, we show that patches of floating macroplastics are detectable in optical data acquired by the European Space Agency (ESA) Sentinel-2 satellites and, furthermore, are distinguishable from naturally occurring materials such as seaweed. We present case studies from four countries where suspected macroplastics were detected in Sentinel-2 Earth Observation data. Patches of materials on the ocean surface were highlighted using a novel Floating Debris Index (FDI) developed for the Sentinel-2 Multi-Spectral Instrument (MSI). In all cases, floating aggregations were detectable on sub-pixel scales, and appeared to be composed of a mix of seaweed, sea foam, and macroplastics. Building first steps toward a future monitoring system, we leveraged spectral shape to identify macroplastics, and a NaĂŻve Bayes algorithm to classify mixed materials. Suspected plastics were successfully classified as plastics with an accuracy of 86
    • 

    corecore