232 research outputs found

    Morphological Classification of galaxies by Artificial Neural Networks

    Get PDF
    We explore a method for automatic morphological classification of galaxies by an Artificial Neural Network algorithm. The method is illustrated using 13 galaxy parameters measured by machine (ESO-LV), and classified into five types (E, S0, Sa + Sb, Sc + Sd and Irr). A simple Backpropagation algorithm allows us to train a network on a subset of the catalogue according to human classification, and then to predict, using the measured parameters, the classification for the rest of the catalogue. We show that the neural network behaves in our problem as a Bayesian classifier, i.e. it assigns the a posteriori probability for each of the five classes considered. The network highest probability choice agrees with the catalogue classification for 64 percent of the galaxies. If either the first or the second highest probability choice of the network is considered, the success rate is 90 per cent. The technique allows uniform and more objective classification of very large extragalactic data sets

    Automated classification of stellar spectra - I. Initial results with artificial neural networks

    Get PDF
    We have initiated a project to classify stellar spectra automatically from high-dispersion objective prism plates. The automated technique presented here is a simple backpropagation neural network, and is based on the visual classification work of Houk. The plate material (Houk's) is currently being digitized, and contains ≈ 105 stars down to V ≈ 11 at ≈ 2-Å resolution from ≈ 3850 to 5150 Å. For this first paper in the series we report on the results of 575 stars digitized from 6 plates. We find that even with the limited data set now in hand we can determine the temperature classification to better than 1.7 spectral subtypes from B3 to M4. Our current sample size provides insufficient training set material to generate luminosity and metallicity classifications. Our eventual aims in this project are (1) to create a large and homogeneous digital stellar spectral library; (2) to create a well-understood and robust automatic classification algorithm which can determine temperatures, luminosities and metallicities for a wide variety of spectral types; (3) to use these data, supplemented by deeper plate material, for the study of Galactic structure and chemical evolution; and (4) to find unusual or new classes of objects

    APM z>4 QSO Survey: Distribution and Evolution of High Column Density HI Absorbers

    Get PDF
    Eleven candidate damped Lya absorption systems were identified in 27 spectra of the quasars from the APM z>4 survey covering the redshift range 2.83.5). High resolution echelle spectra (0.8A FWHM) have been obtained for three quasars, including 2 of the highest redshift objects in the survey. Two damped systems have confirmed HI column densities of N(HI) >= 10^20.3 atoms cm^-2, with a third falling just below this threshold. We have discovered the highest redshift damped Lya absorber known at z=4.383 in QSO BR1202-0725. The APM QSOs provide a substantial increase in the redshift path available for damped surveys for z>3. We combine this high redshift sample with other quasar samples covering the redshift range 0.008 < z < 4.7 to study the redshift evolution and the column density distribution function for absorbers with log N(HI)>=17.2. In the HI column density distribution f(N)=kN^-beta we find evidence for breaks in the power law, flattening for 17.221.2. The column density distribution function for the data with log N(HI)>=20.3 is better fit with the form f(N)=(f*/N*)(N/N*)^-beta exp(-N/N*). Significant redshift evolution in the number density per unit redshift is evident in the higher column density systems with an apparent decline in N(z) for z>3.5.Comment: To appear in MNRAS. Latex file (10 pages of text) plus 14 separate postscript figure files. Requires mn.sty. Postscript version with figures embedded is available at http://www.ociw.edu/~lisa/publications.htm

    Evolution of Neutral Gas at High Redshift -- Implications for the Epoch of Galaxy Formation

    Get PDF
    Though observationally rare, damped Lya absorption systems dominate the mass density of neutral gas in the Universe. Eleven high redshift damped Lya systems covering 2.84 QSO Survey, extending these absorption system surveys to the highest redshifts currently possible. Combining our new data set with previous surveys we find that the cosmological mass density in neutral gas, omega_g, does not rise as steeply prior to z~2 as indicated by previous studies. There is evidence in the observed omega_g for a flattening at z~2 and a possible turnover at z~3. When combined with the decline at z>3.5 in number density per unit redshift of damped systems with column densities log N(HI)>21 atoms cm^-2, these results point to an epoch at z>3 prior to which the highest column density damped systems are still forming. We find that over the redshift range 2<z<4 the total mass in neutral gas is marginally comparable with the total visible mass in stars in present day galaxies. However, if one considers the total mass visible in stellar disks alone, ie excluding galactic bulges, the two values are comparable. We are observing a mass of neutral gas comparable to the mass of visible disk stars. Lanzetta, Wolfe & Turnshek (1995) found that omega_g(z~3.5) was twice omega_g(z~2), implying a much larger amount of star formation must have taken place between z=3.5 and z=2 than is indicated by metallicity studies. This created a `cosmic G-dwarf problem'. The more gradual evolution of omega_g we find alleviates this. These results have profound implications for theories of galaxy formation.Comment: To appear in MNRAS. Latex file (4 pages of text) plus 3 separate postscript figure files. Requires mn.sty. Postscript version with figures embedded is available at http://www.ociw.edu/~lisa/publications.htm

    Spitzer Observations of Galaxy Clusters

    Get PDF
    We present preliminary results of a project to study three rich nearby clusters of galaxies with the Spitzer space telescope. The Spitzer observations in the four IRAC and three MIPS bands cover a region up to three virial radii, approximately, and have been recently completed. On the basis of the first Spitzer images, we followed up spectroscopically the far-infrared sources with the multi-fiber spectrograph HYDRA on the WIYN telescope. 70% of the sources brighter than 0.3 mJy at 24 ÎŒm and r’ < 20.5 have been observed for a total of 1078 spectra. For 87% of them we were able to measure redshifts obtaining 50 to 100 members for the different clusters. This first study shows that the far-IR sources in these clusters are predominantly powered by star formation and clustered in regions far from the center. In the case of A1763, they seem to be situated along a filament supporting the idea of infalling galaxies experiencing bursts of star formation during their first contact with the hot intra-cluster medium

    AUTOMATED MORPHOLOGICAL CLASSIFICATION OF APM GALAXIES BY SUPERVISED ARTIFICIAL NEURAL NETWORKS

    Get PDF
    We train Artificial Neural Networks to classify galaxies based solely on the morphology of the galaxy images as they appear on blue survey plates. The images are reduced and morphological features such as bulge size and the number of arms are extracted, all in a fully automated manner. The galaxy sample was first classified by 6 independent experts. We use several definitions for the mean type of each galaxy, based on those classifications. We then train and test the network on these features. We find that the rms error of the network classifications, as compared with the mean types of the expert classifications, is 1.8 Revised Hubble Types. This is comparable to the overall rms dispersion between the experts. This result is robust and almost completely independent of the network architecture used.Comment: The full paper contains 25 pages, and includes 22 figures. It is available at ftp://ftp.ast.cam.ac.uk/pub/hn/apm2.ps . The table in the appendix is available on request from [email protected]. Mon. Not. R. Astr. Soc., in pres

    The evolution of Omega(HI) and the epoch of formation of damped Lyman-alpha absorbers

    Full text link
    We present a study of the evolution of the column density distribution, f(N,z), and total neutral hydrogen mass in high-column density quasar absorbers using candidates from a recent high-redshift survey for damped Lyman-alpha (DLA) and Lyman limit system (LLS) absorbers. The observed number of LLS (N(HI)> 1.6 * 10^{17} atom/cm^2) is used to constrain f(N,z) below the classical DLA Wolfe et al. (1986) definition of 2 * 10^{20} atom/cm^2. The joint LLS-DLA analysis shows unambiguously that f(N,z) deviates significantly from a single power law and that a Gamma-law distribution of the form f(N,z)=(f_*/N_*)(N/N_*)^{-Beta} exp(-N/N_*) provides a better description of the observations. These results are used to determine the amount of neutral gas contained in DLAs and in systems with lower column density. Whilst in the redshift range 2 to 3.5, ~90% of the neutral HI mass is in DLAs, we find that at z>3.5 this fraction drops to only 55% and that the remaining 'missing' mass fraction of the neutral gas lies in sub-DLAs with N(HI) 10^{19} - 2 * 10^{20} atom/cm^2. The characteristic column density, N_*, changes from 1.6 * 10^{21} atom/cm^2 at z3.5, supporting a picture where at z>3.5, we are directly observing the formation of high column density neutral hydrogen DLA systems from lower column density units. Moreover since current metallicity studies of DLA systems focus on the higher column density systems they may be giving a biased or incomplete view of global galactic chemical evolution at z>3. After correcting the observed mass in HI for the ``missing'' neutral gas the comoving mass density now shows no evidence for a decrease above z=2. (abridged)Comment: Replaced to match version published in MNRAS. One figure and appendix added, analysis and conclusions unchange

    Soft X-ray Absorption by High-Redshift Intergalactic Helium

    Get PDF
    The Lyman alpha absorption from intergalactic, once-ionized helium (HeII) has been measured with HST in four quasars over the last few years, over the redshift range 2.4 < z < 3.2. These observations have indicated that the HeII reionization may not have been completed until z\simeq 2.8, and that large fluctuations in the intensity of the HeII-ionizing background were present before this epoch. The detailed history of HeII reionization at higher redshifts is, however, model-dependent and difficult to determine from these observations, because the IGM can be completely optically thick to Lya photons when only a small fraction of the helium remains as HeII. In addition, finding quasars in which the HeII Lya absorption can be observed becomes increasingly difficult at higher redshift, owing to the large abundance of hydrogen Lyman limit systems. It is pointed out here that HeII in the IGM should also cause detectable continuum absorption in the soft X-rays. The spectrum of a high-redshift source seen behind the IGM when most of the helium was HeII should recover from the HeII Lyman continuum absorption at an observed energy \sim 0.1 keV. Galactic absorption will generally be stronger, but not by a large factor; the intergalactic HeII absorption can be detected as an excess over the expected Galactic absorption from the 21cm HI column density. In principle, this method allows a direct determination of the fraction of helium that was singly ionized as a function of redshift, if the measurement is done on a large sample of high-redshift sources over a range of redshift.Comment: accepted to The Astrophysical Journal Letter

    Starburst Galaxies in Cluster-feeding Filaments Unveiled by Spitzer

    Get PDF
    We report the first direct detection with Spitzer of galaxy filaments. Using Spitzer and ancillary optical data, we have discovered two filamentary structures in the outskirts of the cluster Abell 1763. Both filaments point toward Abell 1770, which lies at the same redshift as Abell 1763 (z = 0.23), at a projected distance of ~13 Mpc. The X-ray cluster emission is elongated along the same direction. Most of the far-infrared emission is powered by star formation. According to the optical spectra, only one of the cluster members is classified as an active galactic nucleus. Star formation is clearly enhanced in galaxies along the filaments: the fraction of starburst galaxies in the filaments is more than twice than that in other cluster regions. We speculate that these filaments are feeding the cluster Abell 1763 by the infall of galaxies and galaxy groups. Evidence for one of these groups is provided by the analysis of galaxy kinematics in the central cluster region

    Mapping Global Star Formation in the Interacting Galaxy Pair Arp32

    Get PDF
    A multi-wavelength set of photometric data including UV (GALEX), optical, near-IR, infrared (Spitzer) and radio (VLA 20cm) images and spectroscopic observations are used to map the dust-obscured and unobscured star formation in the galaxy pair Arp 32. The system consists of an actively starforming galaxy and another one with depressed star formation. The most active galaxy has disrupted morphology and different sites of star formation. Spectroscopic data show hints of nuclear activity in its core, intense star formation in limited regions of the galaxy as well as an underlying population of stars witnessing a past episode of star formation. Current star formation rates are estimated from UV and bolometric IR luminosities
    • 

    corecore