9 research outputs found

    Modern microwave methods in solid state inorganic materials chemistry: from fundamentals to manufacturing

    Get PDF
    No abstract available

    Jonathan Edwards on Original Sin

    No full text

    Integrated Ocean Drilling Program Expedition 327 Preliminary Report: Juan de Fuca Ridge-Flank Hydrogeology The hydrogeologic architecture of basaltic oceanic crust: compartmentalization, anisotropy, microbiology, and crustal-scale properties on the eastern flank of Juan de Fuca Ridge, eastern Pacific Ocean, 5 July–5 September 2010

    No full text
    Integrated Ocean Drilling Program (IODP) Expedition 327 and related experiments focus on understanding fluid–rock interactions in young, upper ocean crust on the eastern flank of the Juan de Fuca Ridge, delineating the magnitude and distribution of hydrologic properties; the extent to which crustal compartments are connected or isolated (laterally and with depth); the rates and spatial extent of ridge-flank fluid circulation; and links between ridge-flank circulation, crustal alteration, and geomicrobial processes. Expedition 327 built on the achievements of IODP Expedition 301 and subsequent submersible and remotely operated vehicle (ROV) expeditions. Both drilling expeditions installed subseafloor borehole observatories ("CORKs") in basement holes to allow borehole conditions to recover to a more natural state after the dissipation of disturbances caused by drilling, casing, and other operations; provide a long-term monitoring and sampling presence for determining fluid pressure, temperature, composition, and microbiology; and facilitate the completion of active experiments to resolve crustal hydrogeologic conditions and processes.During Expedition 327, two basement holes were cored and drilled at Site U1362. Hole U1362A was cored and drilled to 528 meters below seafloor (mbsf) (292 meters subbasement [msb]), subjected to geophysical logging and hydrologic testing, and instrumented with a multilevel CORK observatory. Hole U1362B was drilled to 359 mbsf (117 msb), subjected to a 24 h pumping and tracer injection experiment, and instrumented with a single-level CORK observatory. Both CORK observatories include monitoring of pressure and temperature and downhole fluid and microbiology sampling. Wellhead samplers will be added and a long-term cross-hole test will be initiated during a postdrilling ROV expedition scheduled for Summer 2011. In addition, part of an instrument string deployed in Hole U1301B during Expedition 301 was recovered, and a replacement string of thermal sensors was installed. Finally, a program of shallow sediment coring was completed adjacent to Grizzly Bare outcrop, a suspected site of regional hydrothermal recharge. Thermal measurements and analyses of pore fluid and microbiological samples from a series of holes aligned radially from the outcrop edge will elucidate rates of fluid transport and evolution during the initial stages of ridge-flank hydrothermal circulation

    The ChemCam Instrument Suite on the Mars Science Laboratory (MSL) Rover: Body Unit and Combined System Tests

    Get PDF
    The ChemCam instrument suite on the Mars Science Laboratory (MSL) rover Curiosity provides remote compositional information using the first laser-induced breakdown spectrometer (LIBS) on a planetary mission, and provides sample texture and morphology data using a remote micro-imager (RMI). Overall, ChemCam supports MSL with five capabilities: remote classification of rock and soil characteristics; quantitative elemental compositions including light elements like hydrogen and some elements to which LIBS is uniquely sensitive (e.g., Li, Be, Rb, Sr, Ba); remote removal of surface dust and depth profiling through surface coatings; context imaging; and passive spectroscopy over the 240-905 nm range. ChemCam is built in two sections: The mast unit, consisting of a laser, telescope, RMI, and associated electronics, resides on the rover's mast, and is described in a companion paper. ChemCam's body unit, which is mounted in the body of the rover, comprises an optical demultiplexer, three spectrometers, detectors, their coolers, and associated electronics and data handling logic. Additional instrument components include a 6 m optical fiber which transfers the LIBS light from the telescope to the body unit, and a set of onboard calibration targets. ChemCam was integrated and tested at Los Alamos National Laboratory where it also underwent LIBS calibration with 69 geological standards prior to integration with the rover. Post-integration testing used coordinated mast and instrument commands, including LIBS line scans on rock targets during system-level thermal-vacuum tests. In this paper we describe the body unit, optical fiber, and calibration targets, and the assembly, testing, and verification of the instrument prior to launch

    Bibliography

    No full text

    Chronic Illness Self-care and the Family Lives of Older Adults: A Synthetic Review Across Four Ethnic Groups

    No full text
    corecore