3,869 research outputs found

    On the non-minimality of the largest weight codewords in the binary Reed-Muller codes

    Get PDF
    The study of minimal codewords in linear codes was motivated by Massey who described how minimal codewords of a linear code define access structures for secret sharing schemes. As a consequence of his article, Borissov, Manev, and Nikova initiated the study of minimal codewords in the binary Reed-Muller codes. They counted the number of non-minimal codewords of weight 2d in the binary Reed-Muller codes RM(r, in), and also gave results on the non-minimality of codewords of large weight in the binary Reed-Muller codes RM(r, in). The results of Borissov, Manev, and Nikova regarding the counting of the number of non-minimal codewords of small weight in RM(r,m) were improved by Schillewaert, Storme, and Thas who counted the number of non-minimal codewords of weight smaller than 3d in RM(r,m). This article now presents new results on the non-minimality of large weight codewords in RM(r, m)

    Independence of the judiciariy

    Get PDF

    A spectrum result on maximal partial ovoids of the generalized quadrangle Q(4,q), q odd

    Get PDF
    In this article, we prove a spectrum result on maximal partial ovoids of the generalized quadrangle Q(4, q), q odd, i.e. for every integer k in the interval [a, b], where a approximate to q2 and b approximate to 9/10q2, there exists a maximal partial ovoid of Q(4, q), q odd, of size k. Since the generalized quadrangle IN(q) defined by a symplectic polarity of PG(3, q) is isomorphic to the dual of the generalized quadrangle Q(4, q), the same result is obtained for maximal partial spreads of 1N(q), q odd. This article concludes a series of articles on spectrum results on maximal partial ovoids of Q(4, q), on spectrum results on maximal partial spreads of VV(q), on spectrum results on maximal partial 1-systems of Q(+)(5,q), and on spectrum results on minimal blocking sets with respect to the planes of PG(3, q). We conclude this article with the tables summarizing the results

    A spectrum result on maximal partial ovoids of the generalized quadrangle Q(4,q), q odd

    Get PDF
    In this article, we prove a spectrum result on maximal partial ovoids of the generalized quadrangle Q(4, q), q odd, i.e. for every integer k in the interval [a, b], where a approximate to q2 and b approximate to 9/10q2, there exists a maximal partial ovoid of Q(4, q), q odd, of size k. Since the generalized quadrangle IN(q) defined by a symplectic polarity of PG(3, q) is isomorphic to the dual of the generalized quadrangle Q(4, q), the same result is obtained for maximal partial spreads of 1N(q), q odd. This article concludes a series of articles on spectrum results on maximal partial ovoids of Q(4, q), on spectrum results on maximal partial spreads of VV(q), on spectrum results on maximal partial 1-systems of Q(+)(5,q), and on spectrum results on minimal blocking sets with respect to the planes of PG(3, q). We conclude this article with the tables summarizing the results

    Generalised Veroneseans

    Get PDF
    In \cite{ThasHVM}, a characterization of the finite quadric Veronesean Vn2n\mathcal{V}_{n}^{2^{n}} by means of properties of the set of its tangent spaces is proved. These tangent spaces form a {\em regular generalised dual arc}. We prove an extension result for regular generalised dual arcs. To motivate our research, we show how they are used to construct a large class of secret sharing schemes
    corecore