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Abstract

In [8], a characterization of the finite quadric Veronesean V2n

n by means
of properties of the set of its tangent spaces is proved. These tangent
spaces form a regular generalised dual arc. We prove an extension result
for regular generalised dual arcs. To motivate our research, we show how
they are used to construct a large class of secret sharing schemes.

A typical problem in (finite) geometry is the study of highly symmetrical
substructures. For example, arcs are configurations of points in PG(n, q) such
that each n+ 1 of them are in general position, while n1-dimensional dual arcs
are sets of n1-spaces such that each two intersect in a point and any three
of them are skew. These two structures appear naturally in cryptographical
applications.

In this article, we define objects, called (generalised) dual arcs; a class of
objects that contain classical arcs and n1-dimensional dual arcs as special cases.
These (generalised) dual arcs have applications in cryptography as well.

We give a construction method for a wide class of parameters and prove an
extension result for regular generalised dual arcs of order d = 1.

In Sections 1 and 2, we give the necessary definitions, constructions, and ex-
amples of applications in cryptography. Section 3 refers to known classification
results, and Section 4 states our main characterization theorem (Theorem 13).
We now start with the required definitions to make this article self-contained.

1 Definitions and constructions
Definition 1
A generalised dual arc F of order d with dimensions n = n0 > n1 > n2 > · · · >
nd+1 > −1 of PG(n, q) is a set of n1-dimensional subspaces of PG(n, q) such
that:

1. each j of these subspaces intersect in a subspace of dimension nj , 1 ≤ j ≤
d+ 1,

2. each d+ 2 of these subspaces have no common intersection.

We call (n = n0, n1, . . . , nd+1) the parameters of the generalised dual arc.
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Definition 2
A generalised dual arc of order d with parameters (n = n0, . . . , nd+1) is regular
if, in addition, the n1-dimensional spaces span PG(n, q) and if it satisfies the
property that if π is the intersection of j elements of F , j ≤ d, then π is spanned
by the subspaces of dimension nj+1 which are the intersections of π with the
remaining elements of F .

Construction 1
Let PG(V ) be an n-dimensional space with basis ei (0 ≤ i ≤ n).

Let PG(W ) be an
((
n+d+1
d+1

)
− 1
)

-dimensional space with basis ei0,...,id (0 ≤
i0 ≤ i1 ≤ · · · ≤ id ≤ n).

We now define a multilinear mapping from PG(V ) to PG(W ). In the de-
scription of this multilinear mapping and in the remainder of this article, the
vector ei0,...,id , for 0 ≤ i0, i1, . . . , id ≤ n, is identical to the vector eiσ(0),...,iσ(d) ,
where σ is a permutation of {0, . . . , d} with 0 ≤ iσ(0) ≤ · · · ≤ iσ(d) ≤ n. For
example, e001, e010, e001 all denote the same vector e001.

Let θ : V d+1 →W be the multilinear mapping

θ : (
n∑

i0=0

x
(0)
i0
ei0 , . . . ,

n∑
id=0

x
(d)
id
eid) 7→

∑
0≤i0,...,id≤n

x
(0)
i0
· . . . · x(d)

id
ei0,...,id . (1)

For example, θ(x(0)
0 e0 + x

(0)
1 e1, x

(1)
0 e0 + x

(1)
1 e1) = x

(0)
0 x

(1)
0 e0,0 + (x(0)

0 x
(1)
1 +

x
(0)
1 x

(1)
0 )e0,1 + x

(0)
1 x

(1)
1 e1,1.

For each point P = [x] of PG(V ), we define a subspace D(P ) of PG(W ) by

D(P ) = 〈θ(x, v1, . . . , vd) | v1, . . . , vd ∈ V 〉 . (2)

.

Theorem 3 ([5])
The set D = {D(P ) | P ∈ PG(V )} is a generalised dual arc with dimensions

di =
(
n+d+1−i
d+1−i

)
− 1, i = 0, . . . , d+ 1.

For q odd and qn−1
q−1 ≥

(
n+d
d+1

)
, there is an alternative construction.

Construction 2
We define ζ : PG(V )→ PG(W ) by

ζ : [
n∑
i=0

xiei] 7→ [
∑

0≤i0≤···≤id≤n

xi0 · · ·xidei0,...,id ].

This mapping ζ is a generalisation of the well-known quadratic Veronesean
map (see [3]). We call it the generalised Veronesean.

With b and B respectively, we denote the standard scalar product of V and
W , i.e.,

b(
n∑
i=0

xiei,

n∑
i=0

yiei) =
n∑
i=0

xiyi,
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and
B(

∑
0≤i0≤···≤id≤n

xi0,...,idei0,...,id ,
∑

0≤i0≤···≤id≤n

yi0,...,idei0,...,id) =

∑
0≤i0≤···≤id≤n

xi0,...,idyi0,...,id

with summations over 0 ≤ i0 ≤ · · · ≤ id ≤ n.
For each x ∈ V , we denote by x⊥ the subspace of V perpendicular to x with

respect to b. So
x⊥ = {y ∈ V | b(x, y) = 0}.

Then

D(P ) = {[z] ∈ PG(W ) | B(z, ζ(y)) = 0 for all y ∈ x⊥} (3)

is a generalised dual arc.

We will not use Construction 2 in this article. Hence, we refer to [5] for
a proof that Construction 2 gives generalised dual arcs isomorphic to the ones
described by Construction 1.

For the second construction, we call the arcs of form D = {D(P )|P ∈
PG(V )} Veronesean dual arcs.

Below, we give two examples of our general construction.

Example 1
Starting with PG(2, q), the mapping ζ : PG(2, q)→ PG(5, q) with

ζ([x0, x1, x2]) = [x2
0, x

2
1, x

2
2, x0x1, x0x2, x1x2]

defines the quadratic Veronesean V4
2 .

If P = [a, b, c], the planes D(P ) defined above have the equation

D(P ) = {[ax0, bx1, cx2, ax1 + bx0, ax2 + cx0, bx2 + cx1] | x0, x1, x2 ∈ Fq} .

These planes form a regular generalised dual arc of q2 + q + 1 planes with
parameters (5, 2, 0).

Example 2
The map ζ : PG(2, q)→ PG(9, q) with

ζ([x0, x1, x2]) = [x3
0, x

3
1, x

3
2, x

2
0x1, x

2
0x2, x

2
1x0, x

2
1x2, x

2
2x0, x

2
2x1, x0x1x2]

defines a cubic Veronesean. Construction 1 associates to each of the q2 + q + 1
points a 5-dimensional space in PG(9, q). Each two of these 5-spaces intersect
in a plane. Each three 5-spaces share a common point and each four 5-spaces
are skew.
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Three of the q2 + q + 1 5-spaces are:

π0 := D([1, 0, 0]) = {[e0, 0, 0, e1, e2, e3, 0, e4, 0, e5] | ei ∈ Fq},
π1 := D([0, 1, 0]) = {[0, e0, 0, e1, 0, e2, e3, 0, e4, e5] | ei ∈ Fq},
π2 := D([0, 0, 1]) = {[0, 0, e0, 0, e1, 0, e2, e3, e4, e5] | ei ∈ Fq}.

In each 5-space, the other q2+q 5-spaces intersect in a configuration of q2+q
planes. These planes are a part of the Veronesean described in Example 1.

For π0, the corresponding Veronesean has the form

V0 := [x2
0, 0, 0, x0x1, x0x2, x

2
1, 0, x

2
2, 0, x1x2].

This Veronesean V0 has q2 +q+1 tangent planes; where q2 +q of the tangent
planes are intersections of π0 with the other 5-spaces. The extra plane has the
form

E0 := {[e0, 0, 0, e1, e2, 0, 0, 0, 0, 0] | e0, e1, e2 ∈ Fq} .

Similarly, we see in π1 the Veronesean

V1 := [0, x2
1, 0, x

2
0, 0, x0x1, x1x2, 0, x2

2, x0x2]

and the extra plane

E1 := {[0, e0, 0, 0, 0, e1, e2, 0, 0, 0] | e0, e1, e2 ∈ Fq},

and in π2, we have the Veronesean

V2 := [0, 0, x2
2, 0, x

2
0, 0, x

2
1, x0x2, x1x2, x0x1]

and the extra plane

E2 := {[0, 0, e0, 0, 0, 0, 0, e1, e2, 0] | e0, e1, e2 ∈ Fq} .

Generalised dual arcs can be used to construct message authentication codes
[5]. Below we give another application, namely secret sharing schemes.

2 Secret sharing

Now we will investigate applications of generalised dual arcs in secret sharing
schemes. For an overview of secret sharing and the links with geometry we refer
to [4]. A recent overview of different adversary models in secret sharing can be
found in [6].

We only consider a particular class of secret sharing schemes here, which is
defined below.
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Definition 4
In a k-out-of-n secret sharing scheme a dealer generates n shares s1, . . . , sn and
a secret s. The shares are given to different participants. Each k participants
can reconstruct the secret with their shares.

Less than k participants cannot reconstruct the share. By pi we denote
the probability that i < k participants may guess that share correctly. The
probabilities pi are called the attack probabilities. If pi+1/pi > 1 the system
leaks information about the share.

Actually, we don’t apply generalised dual arcs directly. But the dual of these
structures, which we call generalised arcs.

Definition 5
A generalised arc A of order d with dimensions n1 < n2 < · · · < nd+1 of
PG(n, q) is a set of n1-dimensional subspaces of PG(n, q) such that:

1. each j of these subspaces generate a subspace of dimension nj , 1 ≤ j ≤
d+ 1,

2. each d+ 2 of these subspaces span PG(n, q).

We call (n, n1, . . . , nd+1) the parameters of the arc.
If in addition the common intersection of all nj+1-dimensional subspaces

spanned by j+1 elements of the arc containing a given nj-dimensional subspace
π spanned by j elements of the arc is π, we call the arc regular.

Theorem 6
The dual of an arc with parameters (n, n1, . . . , nd+1) is a dual arc with param-
eters (n, n− 1− n1, . . . , n− 1− nd+1) and vice versa.

Furthermore, the dual arc is regular if and only if the arc is regular.

Proof. Dualising in PG(n, q) maps every k-dimensional subspace onto an (n−
1 − k)-dimensional subspace. Dualising exchanges the concepts ”span” and
”intersection”. �

Dual to Construction 1, we have the following construction of generalised
arcs.

Construction 3
As in Construction 1, let PG(V ) be an n-dimensional space with basis ei (0 ≤
i ≤ n).

Let PG(W ) be a
((
n+d+1
d+1

)
− 1
)

-dimensional space with basis ei0,...,id (0 ≤
i0 ≤ i1 ≤ · · · ≤ id ≤ n).

We define ζ : PG(V )→ PG(W ) by

ζ : [
n∑
i=0

xiei] 7→ [
∑

0≤i0≤···≤id≤n

xi0 · . . . · xidei0,...,id ] .
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With b and B respectively, we denote the standard scalar product of V and
W , i.e.,

b(
n∑
i=0

xiei,

n∑
i=0

yiei) =
n∑
i=0

xiyi,

and

B(
∑

0≤i0≤···≤id≤n

xi0,...,idei0,...,id ,
∑

0≤i0≤···≤id≤n

yi0,...,idei0,...,id) =
∑

0≤i0≤···≤id≤n

xi0,...,idyi0,...,id .

For each x ∈ V , we denote by x⊥ the subspace of V perpendicular to x with
respect to b. So

x⊥ = {y ∈ V | b(x, y) = 0}.

For each point P = [x] of PG(V ), we define a subspace A(P ) of PG(W ) by

A(P ) =
〈
ζ(y) | y ∈ x⊥

〉
. (4)

Theorem 7
The set A = {A(P ) | P ∈ PG(n, q)}, defined in Construction 3, is a generalised

arc with parameters ni =
(
n+d+1
d+1

)
−
(
n+d+1−i
d+1−i

)
− 1, i = 1, . . . , d+ 1.

The generalised dual arc described in Construction 1 is the dual of that arc.

Proof. By Definition (check Equation (3)), we have D(P ) = A(P )⊥ with
respect to the bilinear form B. Since B is a non-degenerate form, this means
that D(P ) is dual to A(P ). Thus we may apply Theorem 6, which together
with Theorem 3 shows that A is indeed an arc. �

Before we describe the construction of a secret sharing scheme in general,
we give two examples that use the dual arc with parameters (9, 5, 2, 0) we have
seen in Example 2.

Example 3
The dual of the dual arc with parameters (9, 5, 2, 0) is an arc consisting of q2 +
q + 1 different 3-dimensional spaces in PG(9, q), with the following properties:

1. Each two 3-dimensional spaces generate a 6-space.

2. Each three 3-dimensional spaces generate an 8-space.

3. Each four 3-dimensional spaces generate PG(9, q).

Now take the space PG(10, q). Select any hyperplane as the secret. In that
hyperplane select the above configuration of q2 + q + 1 3-dimensional spaces as
shares.

If the attacker does not have a share, he has a probability of q−1
q11−1 to guess

the secret 9-space.
If the attacker knows only one share, he has to guess a 9-space through the

known 3-dimensional space, so he has a probability of q−1
q7−1 to guess the secret.
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Similarly, an attacker that knows 2 or 3 shares has a probability of q−1
q4−1 or

q−1
q2−1 = 1

q+1 to guess the share.
Any 4 shares reconstruct the secret.

Example 4
As in the previous example, we select a hyperplane Π in PG(10, q) and an arc
consisting of q2 + q+ 1 3-dimensional spaces with the same properties as above.
One of these 3-dimensional spaces π will be the secret. The other 3-dimensional
spaces are the shares.

Furthermore, we select a 4-dimensional space Π4 through π not contained
in Π and make it public. If an attacker wants to find the secret space, he has
to reconstruct Π and then the secret space is the intersection Π ∩ Π4. A short
calculation shows that an attacker who knows i (i ≤ 4) shares has a probability
of q−1

q5−i−1 to guess the secret.
Another way to vary the attack probabilities is the following. Recall that

the q2 + q + 1 different 5-spaces of the dual arc are of the form D(P ) where P
is a point of a 2-dimensional space PG(2, q). The q + 1 different 5-spaces that
correspond to the q+ 1 points of a line of PG(2, q) lie in a common 8-space. In
the dual setting, this means that the q + 1 corresponding 3-dimensional spaces
intersect in a common point.

So if we fix one such 3-dimensional space π, it has q+1 different intersection
points with the other q2 + q 3-spaces. Suppose π is the image of the point
P0 = [1, 0, 0]. Furthermore, let P1 = [0, 1, 0] and P2 = [0, 0, 1]. Consider lines of
the form 〈P0, aP1+P2〉 and 〈P0, P1〉. Then they define q+1 different intersection
points forming the twisted cubic arc consisting of the points Pa = [1, a, a2, a3]
(a ∈ Fq) and P∞ = [0, 0, 0, 1]. Choose a plane in π which contains no intersection
point. This is possible, since Fq[X] contains an irreducible polynomial of degree
3.

Now we select this plane as the secret. We select a 3-dimensional space
Π3 through this plane not contained in Π and make this public. An attacker
who knows i (i < 4) shares has attack probabilities p0 = p1 = 1

q3+q2+q+1 ,

p2 = 1
q2+q+1 and p3 = 1

q+1 to guess the secret. Thus the new scheme leaks no
information if only one share is known.

By selecting the correct subspace of π, we can also construct schemes that
have no information leak for 2 or 3 shares. Then we must select a line or a point
inside π as the secret and take a plane Π2 or line Π1 through the selected line
or point not in Π, and make this public.

Now we give two theorems which use generalised arcs to construct secret
sharing schemes.

Theorem 8
In PG(n+1, q), select an n-dimensional subspace Π as the secret. In Π, select a
generalised arcA of order k−2 with n elements and parameters (n, d1, . . . , dk−1).
The elements of A are the shares.

7



This describes a k-out-of-n secret sharing scheme with the attack probabili-
ties

pi =
q − 1

qn+1−di − 1
for 0 ≤ i < k (formally, we set d0 = −1).

Proof. Every k shares span Π, since A is a generalised arc of order k − 2.
Less than k participants can take their shares π1, . . . , πi and compute the

di-dimensional space 〈π1, . . . , πi〉. They know that Π must contain that space.
But for every n-dimensional space Π′ containing 〈π1, . . . , πi〉, there exists an
arc which has π1, . . . , πi as elements. Thus the best attack is to guess an n-
dimensional space through 〈π1, . . . , πi〉. The number of such spaces is qn+1−di−1

q−1 .
�

Theorem 9
In PG(n + 1, q), select a (d1 + 1)-dimensional subspace π′ and make it public.
In π′, select a d1-dimensional subspace π as the secret. Choose any hyperplane
Π of PG(n + 1, q) that contains π but not π′. Let A be a generalised dual arc
of Π of order k − 2 with n + 1 elements and parameters (n, d1, . . . , dk−1). The
subspace π should be an element of A. The n elements of A different from π
are the shares.

This describes a k-out-of-n secret sharing scheme with the attack probabili-
ties

pi =
q − 1

qdi+1−di+1 − 1
for 0 ≤ i < k − 1 (formally, we set d0 = −1 and dk = n).

Proof. Every k shares span Π, since A is a generalised arc of order k−2. Thus
k participants can compute Π ∩ π′ which is the secret π.

Less than k participants can take their shares π1, . . . , πi and compute the
di-dimensional space 〈π1, . . . , πi〉. Since the secret π is also an element of the
arc A, we find that 〈π1, . . . , πi, π〉 has dimension di+1. This means that

dim(〈π1, . . . , πi〉 ∩ π) = di + d1 − di+1 .

Since by construction π′ ∩Π = π, we also have

dim(〈π1, . . . , πi〉 ∩ π′) = di + d1 − di+1 .

The i participants know that π is a d1-dimensional subspace of π′ containing
the (di + d1 − di+1)-dimensional subspace 〈π1, . . . , πi〉 ∩ π′. But for every d1-
dimensional subspace π̄ through 〈π1, . . . , πi〉∩π′ in π′, there exists a generalised
arc containing π1, . . . , πi and π̄. So the i participants have no further information
and must guess a d1-dimensional subspace of π′ through 〈π1, . . . , πi〉 ∩ π′. The
probability for guessing this correctly is

pi =
q − 1

qdi+1−di+1 − 1
.

�
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3 Known results

In 1947, Bose studied ovals in [1]. In that paper, he proved that an oval in
PG(2, q) has at most q + 1 points if q is odd and at most q + 2 points if q is
even.

Special cases of generalised dual arcs have a long history. A generalised dual
arc of order 0 is just a (partial) spread of PG(n, q). The generalised dual arc of
order n − 1 in PG(n, q) with parameters (n, n − 1, . . . , 1, 0) is just the dual of
an ordinary arc of points in PG(n, q).

Generalised dual arcs of order 1 with n2 = 0 are known as n1-dimensional
dual arcs. It is known that the dimension n of the ambient space PG(n, q) of
an n1-dimensional dual arc satisfies 2n1 ≤ n ≤ 1

2n1(n1 + 3) (see [9]).

Definition 10
A family A of ql+1−1

q−1 + 1 l-dimensional subspaces of PG(n, q) with n ≥ 2 is
called an l-dimensional dual hyperoval if it satisfies the following three axioms:

• Every two elements of A intersect in a point.

• Every three elements of A have no point in their intersection.

• All members of A span the whole space PG(n, q).

The next theorem is the translation to Veronesean dual arcs of the well-
known fact that ovals in PG(2, q), q odd, are maximal, but ovals in PG(2, q), q
even, can be extended to hyperovals (see also [9]).

Theorem 11
For q odd, the Veronesean dual arc is maximal while for q even, the Veronesean
dual arc can be extended by an n1-dimensional space to an n1-dimensional dual
hyperoval. The extension element is called the nucleus.

Proof. In every arc element Ω = D([x0, . . . , xn1 ]), there is only one point not
covered by a second arc element. This point is

ζ([x0, . . . , xn1 ]) = (x2
0, . . . , x

2
n1
, 2x0x1, . . . , 2xn1−1xn1),

where ζ is the Veronesean map.
For odd q, these points ζ([x0, . . . , xn1 ]) span PG( 1

2n1(n1 + 3), q), i.e. the
Veronesean dual arc is not extendable. For q even, they form an n1-dimensional
space which extends the Veronesean dual arc. This space is called the nucleus.
�

In 1958, Tallini [7] (see also [3]) showed that every 2-dimensional dual arc
of q2 + q + 1 elements in PG(5, q), q odd, must be isomorphic to the dual arc
defined by Construction 1. This result was generalised in [8] to the following
characterization of the finite quadric Veronesean V2n

n .
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Result 12
Let F be a set of qn+1−1

q−1 n-dimensional spaces in PG(n(n+3)
2 , q) with the fol-

lowing properties:

(VS1) Each two elements of F intersect in a point.

(VS2) Each three elements of F are skew.

(VS3) The elements of F span PG(n(n+3)
2 , q).

(VS4) Any proper subspace of PG(n(n+3)
2 , q) that is spanned by a collection of ele-

ments of F is a subspace of dimension i(2n−i+3)
2 −1, for some i ∈ {0, . . . , n}.

(VS5) If q is even, at least one space spanned by two elements of F contains more
than two elements of F .

Then either F is a Veronesean dual arc with respect to a quadric Veronesean
V2n

n or q is even and there are two members Ω1,Ω2 ∈ F such that the 2n-
dimensional space 〈Ω1,Ω2〉 only contains 2 elements of F and there is a unique
subspace Ω of dimension n such that {Ω} ∪ F is a Veronesean dual arc with
the nucleus space as constructed in Theorem 11. In particular, if n = 2, then
the statement holds under the weaker hypotheses of F satisfying (V S1), (V S2),
(V S3) and (V S5).

For order d = 1 and q even, there are non-Veronesean dual arcs with the
property that every space spanned by two elements of F contains exactly these
two elements of F . For n = 2, one can classify all examples that do not satisfy
(V S5) by a result of [2]; the only possibilities are for q = 2 and q = 4. This
classification remains open for n ≥ 3, although an infinite class of examples is
known, described in [8].

4 The case d = 1

We prove that for δ > 0, δ small, a dual arc with parameters (n0, n1, n2) of size
qn+1−1
q−1 − δ is not maximal. The proof techniques are similar to the techniques

used in [3] to give an algebraic characterisation of a dual arc of size qn+1−1
q−1 .

The main difference is that the deficiency δ makes simple counting arguments
impossible, so we have to use more difficult structural arguments.

Theorem 13
Assume that δ ≤ q−7

2 for q odd and δ ≤ q−8
2 for q even, and let F be a set of

qn+1−1
q−1 − δ different n-dimensional spaces in PG(n(n+3)

2 , q) with the following
properties:

(1) Each two elements of F intersect in a point.

(2) Each three elements of F are skew.
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(3) The elements of F span PG(n(n+3)
2 , q).

(4) Any proper subspace of PG(n(n+3)
2 , q) that is spanned by a collection of ele-

ments of F is a subspace of dimension i(2n−i+3)
2 −1, for some i ∈ {0, . . . , n}.

(5) If q is even, at least one space spanned by two elements of F contains more
than two elements of F .

Then F is extendable to a regular generalised dual arc of size qn+1−1
q−1 . (In the

case q even, this dual arc of size qn+1−1
q−1 is even extendable to a dual hyperoval.)

The idea of the proof is in the same spirit as the proof of Result 12, so the
proofs of some results describing the general structure will look very similar
as the ones used for that result. The main work lies in the lemmata which
actually deal with the deficiency itself, where we have to reconstruct the missing
elements.

Definition 14
A contact point is a point belonging to at most one element of F .

Property (4) seems very technical. Our next lemma shows that for large q,
property (4) is no restriction. This motivates property (4).

Lemma 15
Let q ≥ n, then any configuration F which satisfies the properties (1)-(3) also
satisfies property (4).

Proof. Assume that the claim of the lemma is wrong, i.e. there exists a sequence
π0, . . . , πk of elements in F with the property:

• Πj = 〈π0, . . . , πj〉, for j ≤ k,

• dim Πj = (j+1)(2n−j+2)
2 − 1, for j < k,

• k(2n−k+3)
2 − 1 < dim Πk <

(k+1)(2n−k+2)
2 − 1.

By induction, we will construct a sequence πk+1, . . . , πn+1 of members of F
with the properties:

(I) the subspace defined recursively by Πi = 〈Πi−1, πi〉 has at least an i-
dimensional subspace in common with πi+1,

(II) the space πi+1 is not contained in Πi.

For i = n, these two conditions yield a contradiction, because the elements of
F have dimension n. This proves the lemma.
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Now we construct πj+1 from the sequence π0, . . . , πj . Note that dim Πj is
bounded by

dim Πk + (n− k) + · · ·+ (n− (j − 1)) ≤
(k + 1)(2n− k + 2)

2
− 2 +

(j − k)(2n− k − j + 1)
2

≤ n(n+ 3)
2

− 1 .

Thus Πj is not the whole space. By property (3), we know that there exists a
space π̄j+1 of F not in Πj . There are at least qn − 1− δ elements of F meeting
π̄j+1 in a point outside of Πj . Thus there are at least qn − δ elements of F not
in Πj . Since πi+1 has at most an (n− 1)-dimensional space in common with Πi

(i < k), we conclude that at most qn−1
q−1 elements of F intersect πi+1 in a point

of Πi. Thus for at most j q
n−1
q−1 elements of F , there exists an i < j such that

this element intersects πi+1 in a point of Πi. Because k ≤ n ≤ q,

qn − δ − k q
n − 1
q − 1

> 0,

implying that there is an element πj+1 of F with the property that πj+1 is not in
Πj and πj+1 ∩ πi+1 /∈ Πi. Especially, we have dim 〈πj+1 ∩ πi+1 | −1 ≤ i < j〉 =
j, i.e. πj+1 ∩Πj is at least a j-dimensional space.

Thus, by induction, we have found the members of F with the properties (I)
and (II), which proves the lemma. �

Property (4) allows us to compute the dimensions of many objects related
to F . An important special case is the following result.

Remark. Let Π be a 2n-dimensional space spanned by two elements of F .
Then an element of F either lies inside Π or intersects Π in a line.

The next lemma gives us an upper bound on the number of elements of F
contained in a space having one of the dimensions mentioned in property (4).

Lemma 16
Every

(
i(2n−i+3)

2 − 1
)

-dimensional space contains at most qi−1
q−1 elements of F .

Proof. Let Π be an
(
i(2n−i+3)

2 − 1
)

-dimensional space spanned by i elements
π1, . . . , πi of F .

An element of F , not contained in Π, intersects Π in an (i− 1)-dimensional
space Πi (this is part of property (4)). Each element of F , contained in Π, must
share a point with Πi. Furthermore, no two elements of F in Π intersect Πi in
the same point, so Π contains at most qi−1

q−1 elements of F . �

To understand the goal of the next lemma, consider the dual arc obtained by
Construction 1. In this example, every element of F corresponds to a point of a
projective space PG(n, q). The 2n-dimensional spaces spanned by two elements
of F correspond to the lines of PG(n, q). Thus if a dual arc with qn+1−1

q−1 − δ
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elements is a subset of this example, then the following is true:

Every 2n-dimensional space spanned by two elements of F contains at least
q + 1− δ elements of F .

Lemma 17 is the first step in that direction.

Lemma 17
Every 2n-dimensional space contains 0, 1, 2 or at least q − δ (δ ≤ (q − 7)/2 for
q odd and δ ≤ (q − 8)/2 for q even) elements of F .

If q is odd, no 2n-dimensional space contains exactly 2 elements of F .

Proof. Let Π be a 2n-dimensional space which contains k elements of F , where
2 ≤ k < q − δ.

Let π′ be any element of F not contained in Π. This element π′ intersects
Π in a line l′ by the remark after Lemma 15. At least q− δ points of l′ must be
covered by a second element of F . Since q − δ − k > 0, there must be a second
element π′′ of F , not contained in Π, which intersects l′. Let π′′ ∩Π = l′′.

The lines l′ and l′′ span a plane π. Since every one of the k elements of F
in Π must intersect π′ and π′′, these k elements intersect π′ and π′′ in a point
on l′, respectively on l′′, different from l′ ∩ l′′. Hence, they intersect π in lines.

Assume that π′′′ is another element of F , not contained in Π, that intersects
Π in l′′′. We prove that if l′′′ has a point in common with l′, then it has also a
point in common with l′′.

Suppose that l′′′ intersects l′. If l′′′ does not intersect l′′, then every element
of F contained in Π must share a line with the plane spanned by l′ and l′′, and
has a point in common with l′′′. Thus these elements share a plane with the
3-dimensional space spanned by l′, l′′ and l′′′. Especially, two of these elements
intersect each other in a line, a contradiction.

This proves that the elements of F , not contained in Π, can be partitioned
into groups. The elements from one group intersect each other in Π, and el-
ements from different groups intersect each other outside of Π. Each group
defines a plane inside Π and the k elements of F contained in Π must intersect
such a plane in lines.

Let π1 and π2 be two planes inside Π defined by such groups. We distinguish
several cases for the intersection π1 ∩ π2.

(1) The planes π1 and π2 cannot be skew to each other. Otherwise, they
would span a 5-dimensional space Ω. Now every element of F in Π shares a line
with π1 and π2, so shares at least a 3-dimensional space with Ω, but then the
elements of F in Π intersect each other in at least a line, which is false.

(2) If π1 and π2 intersect in a line, then at most one element of F contained
in Π contains the line π1 ∩ π2. So at least k − 1 elements of F contained in Π
must share a plane with the 3-dimensional space spanned by π1 and π2. Thus
each two of these elements must share a line, a contradiction for k > 2. We now
eliminate the case k = 2, where one of the two elements of F in Π, for instance
π, passes through the line ` = π1 ∩ π2.

13



For k = 2, all groups have size at least q−δ−1. For, consider a first element
π′ of F not in Π, then consider the line `′ = π′ ∩Π. This line has at most δ+ 1
contact points, so it is intersected in a point by at least q− 2− δ elements of F ,
not lying in Π. This shows that a group of elements of F , not lying in Π, has
at least size q − δ − 1.

But now consider the line ` = π1 ∩ π2, lying in an element π of F in Π,
and in the two planes π1 and π2 containing at least q − δ − 1 lines lying in
elements of F , not contained in Π. Since no point of ` lies in three elements
of F , and every point of ` already lies in the element π of F , we must have
q + 1 ≥ 2(q − δ − 1) + 1, where the +1 arises from the second element of F in
Π. This implies q ≤ 2δ + 2, a contradiction.

(3) Thus π1 and π2 intersect in a point Q. But then the only possibility for
an element of F contained in Π to intersect π1 and π2 in lines is that Q is a
point of that element. Thus all elements of F contained in Π contain Q. Since
every three elements of F are skew, this means that k = 2.

Assume now that we are in the case k = 2 and q is odd. Since there are
qn+1−1
q−1 − 2− δ elements of F not contained in Π, and since for odd q a dual arc

of lines in PG(2, q) contains at most q + 1 elements, each group can contain at
most q − 1 elements, so there are at least

1
q − 1

(
qn+1 − 1
q − 1

− 2− δ
)
>
qn − 1
q − 1

different groups.
Each group defines a plane through Q which intersects an element of F

contained in Π in a line. Since an n-dimensional space only contains qn−1
q−1

different lines through Q, there must exist two groups which define planes π1

and π2 intersecting in a line. But this is impossible as we already proved.
So the case k = 2 is only possible for q even. �

Even if we could not exclude the case k = 2 for q even, we have proven in
step (3) the following characterisation:

Corollary 18
Let q be even and let 〈π, π′〉 be a 2n-space that contains only π and π′ as
elements of F . Then the elements of F\{π, π′} intersect 〈π, π′〉 in groups of

pairwise intersecting lines. Furthermore, there can be at most qn−1
q−1 such groups.

We call a 2n-dimensional space big if it contains at least q − δ elements of
F . The next lemma associates with each big 2n-dimensional space Π a plane π̄
which will be very important in the remaining part of this section.

Lemma 19
Let Π be a 2n-dimensional space containing q + 1 − δi ≥ q − δ elements of F .
Then Π contains a plane π̄ which intersects the q+ 1− δi elements of F in Π in
lines. The elements of F , not in Π, intersect Π in a line. These lines either lie
in π̄, or they are skew to π̄ and then contain δi contact points. Moreover, those
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latter lines skew to π̄ which are the intersection of Π with an element of F not
lying in Π are pairwise disjoint.

Proof. Assume that two elements π̃1 and π̃2 of F , not in Π, intersect Π in two
intersecting lines `1 and `2. Let π̄ be the plane spanned by `1 and `2.

We are not in the case which is assumed in the beginning of the proof of
Lemma 17. However, the same kind of arguments as the ones used in the proof
of Lemma 17 show that

1. Every line in Π that intersects π̄ and that comes from an element of F
not in Π must lie in π̄.

2. Every element of F in Π must intersect π̄ in a line.

3. The lines in Π that come from an element of F not in Π and that do not
lie in π̄ must be pairwise disjoint.

Property 3 is proven in the following way. Otherwise we have two planes π̄1 and
π̄2 corresponding with two different groups of lines as in the proof of Lemma
17. We have shown in the proof of Lemma 17 that π̄1 and π̄2 must intersect in
a point Q which lies on every element of F in Π. But this implies that Π has
only 2 elements of F which is not the case.

So, from now on, we may assume that all the elements of F , not in Π,
intersect Π in pairwise disjoint lines. Now we construct the plane π̄.

Let π1, π2 and π3 be three elements of F in Π. Let Q12 = π1 ∩ π2, Q13 =
π1 ∩ π3 and Q23 = π2 ∩ π3.

The points Q12, Q13, Q23 generate a plane π̄, since otherwise, π1, π2, π3

share a line. Assume that an element of F , not in Π, intersects Π in a line `
that meets π̄. We claim that ` must lie in π̄. Suppose the contrary. Without loss
of generality, we may assume that ` ∩ π̄ /∈ π1 ∪ π2. But then π1 and π2 share a
plane with the 3-dimensional space 〈π̄, `〉, i.e. they share a line, a contradiction.

At most one line in Π that comes from an element of F not in Π lies in π̄,
since these lines are pairwise disjoint. Since every element of F has only δ + 1
contact points, this proves that at least q − δ − 1 points of Q12Q13 lie in an
element of F in Π, different from π1.

Assume that there exists an element π of F in Π which intersects π1 in a
point Q not on Q12Q13. The above arguments show that Q12Q13, QQ12 and
QQ13 must contain at least 3(q − δ − 1) − 3 > q + 1 points in π1 which lie on
two elements of F inside Π, a contradiction with Lemma 16.

Thus every element π of F in Π meets Q12Q13, Q12Q23 and Q13Q23, i.e. it
has a line in common with π̄. �

The next series of lemmas deal with the case q even and k = 2. Let us again
have a look at the example that comes from Construction 1. In this example,
every 2n-dimensional space containing at least one element of F contains either
1 or q+ 1 elements of F . If q is even, we can extend the dual arc of size qn+1−1

q−1
by one element π. This element π has the special property that for all other
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elements π′ ∈ F , the 2n-space 〈π, π′〉 contains no other element of F , see [8].
We call this element the nucleus of F .

We will prove in Lemma 22 that this property holds for every regular gen-
eralised dual arc for q even.

Lemma 20
Let q be even and let π, π′ ∈ F be such that the 2n-dimensional space 〈π, π′〉
contains no other element of F . Let Q = π ∩ π′.

Let Π be a big 2n-dimensional space containing π and let π̄ be the plane
inside Π described by Lemma 19. Then Q ∈ π̄.

Proof. Let Π = 〈π, π′′〉, π′′ ∈ F\{π, π′}. Let π̄′ = 〈Q = π ∩ π′, π′′ ∩ π, π′′ ∩ π′〉.
As we have already seen in Corollary 18, this gives us a group of intersecting
lines in this plane. But Lemma 19 states that the only plane in Π which contains
a group of intersecting lines is π̄, i.e. π̄ = π̄′. �.

Lemma 21
Let q be even. For each π ∈ F either all 2n-dimensional spaces 〈π, π′〉 with
π 6= π′ ∈ F contain exactly two elements of F , or there exists at most one
element π 6= π′ ∈ F such that 〈π, π′〉 contains exactly two elements of F .

Proof. Assume that π lies in a big 2n-dimensional space Π, and let π̄ be the
plane described by Lemma 19 and let ` be the line π̄ ∩ π. By Lemma 20, we
know that an element π′ of F for which 〈π, π′〉 contains no other element of F
must intersect π in a point of `.

Since ` has only q + 1 points and |F| = qn+1−1
q−1 − δ, this means that π must

lie in more than one big 2n-space Π′. But then we have a second line `′ = π̄′∩π
and every element π′ of F for which 〈π, π′〉 contains no other element of F
must intersect π in a point of ` ∩ `′. (` and `′ are different, since ` must meet
the q − δ elements of F in Π, `′ must meet the q − δ elements of F in Π′ and
2q − 2δ − 2 > q + 1, see also step (2) of Lemma 17.) This proves the lemma. �

Lemma 22
Let q be even and assume that there exists a 2n-dimensional space Π which
contains exactly two elements of F . Then there exists at most one element
π ∈ F such that for every π 6= π′ ∈ F , the 2n-space 〈π, π′〉 contains exactly two
elements of F .

Proof. Let Π = 〈π, π′〉. Assume that both elements π and π′ lie in a big 2n-
dimensional space. Then all other elements of F generate with π and π′, respec-
tively, a big 2n-dimensional space (Lemma 21). Let π′′ be such an element and
Π0 = 〈π, π′′〉 with the special plane π̄0 and Π1 = 〈π′, π′′〉 with the special plane
π̄1. By the proof of Lemma 20, we know that π̄0 = 〈π ∩ π′, π ∩ π′′, π′ ∩ π′′〉 = π̄1.

But this is a contradiction since this plane cannot contain 2(q−δ)−1 > q+2
different lines coming from elements of F in Π0 and Π1. Thus either π or π′ does
not lie in big 2n-dimensional spaces. They cannot both lie only in 2n-spaces
which contain 2 elements of F or else by condition (5) of Theorem 13 which
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we assume to be valid for F , we find a π′′ ∈ F\{π, π′} lying in at least one
big 2n-space and in two 2n-spaces with only two elements of F , a contradiction
with Lemma 21. �

If q is even and the special element π from Lemma 22 exists, we simply
remove it from F . This increases the deficiency by 1.

Remark. Thus from now on, we assume that a 2n-space cannot contain 2
elements of F and that δ ≤ (q − 6)/2 when q is even and δ ≤ (q − 7)/2 when q
is odd.

Our next goal is a stronger version of Lemma 19 which states that an element
of F , not in a big 2n-space Π, must be skew to the plane π̄. We will reach this
goal with Lemma 28.

Lemma 23
Let Π1, Π2 and Π3 be distinct 2n-dimensional spaces containing at least q − δ
elements of F .

Then dim(Π1 ∩Π2 ∩Π3) ≤ n.

Proof. By property (4), we know that dim(Π1 ∩Π2) ≤ n+ 1.
Assume that Π1 ∩ Π2 ∩ Π3 is an (n + 1)-dimensional space Π. Since two

elements of F span a 2n-dimensional space, the space Π contains at most one
element of F and the other elements of F in Πi intersect Π in a line.

Let ` be such a line in Π that comes from an element of F in Π1. The
elements in Π2 and Π3 intersect ` in a point. Since 2(q − δ − 1) > q + 1, some
point of ` lies on an element of F in Π1, Π2 and Π3. A contradiction since each
point lies on at most 2 elements of F . �

In the case of Construction 1, we know that the big 2n-dimensional spaces
correspond to the lines of an n-dimensional projective space PG(n, q). Thus in
that case, every element of F lies in exactly qn−1

q−1 big 2n-spaces. Now we can
prove this for a regular generalised dual arc.

Lemma 24
Let π ∈ F . Consider all 2n-dimensional spaces through π containing at least
q−δ elements of F . Then the planes π̄ of these 2n-spaces intersect π in different
lines through a common point.

Moreover, there are exactly qn−1
q−1 different big 2n-spaces through π.

Proof. Let Π and Π′ be two different 2n-spaces through π, and let π̄ and π̄′

be the corresponding planes defined by Lemma 19. By Lemma 19, we know
that π ∩ π̄ and π ∩ π̄′ are lines. These lines must be different since otherwise
π ∩ π̄ = π ∩ π̄′ would contain at least 2(q− δ− 1) > q+ 1 points lying on π and
on another element of F .

By the proof of Lemma 19, we know that at most δ + 2 elements of F not
in Π′ intersect Π′ in lines contained in π̄′. The other elements intersect Π′ in
pairwise skew lines. Thus Π contains at least q− 2δ− 3 ≥ 3 elements of F that
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intersect Π′ in pairwise skew lines; we call this set of lines L1. By symmetry,
we know that Π′ contains at least q− 2δ− 3 ≥ 3 elements of F that intersect Π
in pairwise skew lines; we call this set of lines L2.

Each line in L1 must intersect each line of L2, in the intersection point of
the corresponding elements of F . Thus L1 and L2 are the lines of two opposite
reguli of a hyperbolic quadric Q+(3, q).

By Lemma 19, we know that every element of F in Π has a line in common
with π̄. Thus the line π ∩ π̄ intersects all lines of L1, i.e. it lies in the regulus
defined by L2. By symmetry, π ∩ π̄′ lies in the regulus defined by L1. Thus
π ∩ π̄ and π ∩ π̄′ intersect. In addition we see that every element of Π different
from π must lie in the regulus defined by L1, i.e. all elements of Π intersect Π′

in pairwise skew lines not in π̄′. Thus the first case in Lemma 19 cannot occur.
Especially the intersection point of π ∩ π̄ and π ∩ π̄′ must be a contact point,
since it can lie only in elements of F that lie in the intersection Π ∩Π′.

This proves that either the lines of the form π ∩ π̄ share a common point or
they lie in a common plane since they pairwise share a point. But the lines of
the form π ∩ π̄ must additionally cover all non-contact points in π and intersect
only in contact points. Thus the lines of the form π ∩ π̄ share a common
contact point and there are at most qn−1

q−1 lines of the form π ∩ π̄. That there
are at least that many such lines follows from the fact that each big 2n-space
contains at most q + 1 elements of F and hence π is contained in at least
( q
n+1−1
q−1 − δ − 1)/q > qn−1

q−1 − 1 big 2n-spaces. �

Remark. We note that in this proof, we encounter the strongest condition
on δ, namely q − 2δ − 3 ≥ 3; equivalently, δ ≤ (q − 6)/2 for d = 1.

An important consequence of Lemma 24 is the following result.

Corollary 25
Let Π1, . . . , Π qn−1

q−1
be the big 2n-spaces containing a given element π of F . Let

the space Πi contain q + 1− δi elements of F . Then
∑ qn−1

q−1
i=1 δi = δ.

Especially, most big 2n-dimensional spaces through π contain q+1 elements
of F . Moreover, each 2n-space contains at least q + 1− δ elements of F .

Proof. We already know that every 2n-space containing more than two ele-
ments of F , contains q + 1− δi ≥ q − δ elements of F (Lemma 17).

Since
∑ qn−1

q−1
i=1 δi = δ, necessarily δi ≤ δ, so we can conclude that every 2n-

space containing more than two elements of F , contains q + 1− δi ≥ q + 1− δ
elements of F . �

The next lemma allows us to reduce the case of an (n(n+3)
2 , n, 0)-arc to the

case of a (5, 2, 0)-arc.

Lemma 26
Let Π̂ be a (3n− 1)-space spanned by three elements of F . Let F̂ be the set of

elements of F in Π̂.

18



For every π in F̂ , define

π̂ :=
〈
π ∩ π′ | π 6= π′ ∈ F̂

〉
.

For every π in F̂ , the space π̂ is a plane and these planes form a dual arc in
5 dimensions.

Proof. For each element π in F̂ , we define a linear space L with the following
properties:

(i) The points of the linear space are the points π ∩ π′, with π 6= π′ ∈ F̂ .

(ii) The lines of the linear space are the lines of π through two points of the
form π ∩ π′ and π ∩ π′′ (π′ 6= π, π′′ 6= π ∈ F̂).

If π is not contained in the 2n-dimensional space Π spanned by π′ and π′′,
then it intersects Π in a line containing π ∩ π′ and π ∩ π′′; in fact, this
line contains at least q− δ elements of the form π ∩ π′′′, with π′′′ 6= π ∈ F̂
(Lemma 17).

If π is contained in the 2n-space Π, then π ∩ π′ and π ∩ π′′ lie on the
intersection line of π with the plane π̄ of Π (Lemma 19) which contains at
least q − δ − 1 intersection points of π with other planes of F̂ .

The number of points in L is at least 3(q − δ − 1) − 3 (Lemma 17) and at
most q2 + q + 1 (Lemma 16).

If P0, P1 and P2 are three non-collinear points of the linear space, then P0P1

contains at least q−δ−1 intersection points of two elements of F and thus there
are at least q−δ−1 lines through P2 and therefore at least (q−δ−1)(q−δ−2)+1
intersection points in the plane 〈P0, P1, P2〉.

By the same arguments, four points P0, P1, P2 and P3 of the linear space L
that do not lie in a plane would imply that the linear space L contains at least
(q − δ − 2)[(q − δ − 1)(q − δ − 2) + 1] + 1 points. But this is not possible since
the number of points in L is bounded by q2 + q + 1.

Thus π̂ :=
〈
π ∩ π′ | π 6= π′ ∈ F̂

〉
is a plane.

It remains to be proven that the planes π̂ span a 5-space. Their span has at
most dimension 5 as we know from [9]. Assume that they only span a 4-space.
Then the three elements of F that span Π̂ would have a plane in common
with this 4-dimensional space. This would imply that Π̂ has at most dimension
4 + 3(n− 2) = 3n− 2, but this is false. �

Corollary 27
Every big 2n-space lies in exactly qn−1−1

q−1 different (3n − 1)-spaces spanned by
three elements of F .

Proof. Every big 2n-space Π through π corresponds to a line π̄∩π and all these
lines go through a common point Q. A (3n−1)-space defined by three elements
of F through π corresponds to the lines in one plane through Q inside π by
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Lemma 26. Thus the (3n − 1)-spaces defined by three elements of F through
Π correspond to planes inside π through π̄ ∩ π. There are exactly qn−1−1

q−1 such
planes. �

Now we are able to improve the result of Lemma 19.

Lemma 28
With the notations of Lemma 19, the following result holds: No element of F
not in Π intersects π̄.

Proof. We know from the preceding lemma that π̄ shares a line with every
element π of F in Π, passing through a fixed contact point of π. Assume that
π̄ contains an extra line from an element π′ of F not contained in Π. Let
{R} = π ∩ π′ ∩ π̄.

The elements π and π′ define a big 2n-dimensional space Π′, and Π′ contains
a plane π̄′. The intersection π̄′∩π is a line which contains R and the fixed contact
point. Thus π ∩ π̄′ = π ∩ π̄, a contradiction.

Thus π̄ contains no line that comes from an element of F not in Π. Elements
of F inside Π intersect π̄ in a dual arc of q + 1− δi lines. �

Remark. If π̄ contains lines of contact points, these lines extend the dual
arc of q+ 1− δi lines induced by the elements of F in Π. For δi = 1 and q odd,
we find one line of contact points, and for δi = 1 and q even, we find two lines
of contact points.

Now we are reaching our final goal to prove that F is not maximal. As a
first step, we prove that the planes π̄ contain lines of contact points.

Lemma 29
Let Π1 and Π2 be two big 2n-spaces with the property that 〈Π1,Π2〉 is a (3n−1)-
dimensional space. Assume that Π1 and Π2 share no element of F . Let π̄1 and
π̄2 be the planes in Π1 and Π2 which exist by Lemmas 19 and 28. Then π̄1 ∩Π2

is a line of contact points.

Proof. First of all, it is impossible that the plane π̄1 is contained in Π2. For
assume the contrary. We obtain a contradiction in the following way. Every
element π of F in Π1 intersects Π2 in a line. If π̄1 lies completely in Π2, then
the intersection line ` = Π2∩π equals the line π̄1∩π. This line contains at least
q − δ1 points lying in two elements of F in Π1. But the q + 1− δ2 elements of
F in Π2 must intersect π in a point. So at least q+ 1− δ2 points of ` still lie in
an element of F in Π2. Then there are points of ` lying in three elements of F .
This is false.

Note that the plane π̄1 lies in the 5-space Π̂1 ⊆ Π1 spanned by the planes
π̂ defined in Lemma 26. Then Π2 cannot contain Π̂1, since otherwise every
element of F̂ would intersect Π2 at least in a plane, contradicting the remark
after Lemma 15. Thus Π2∩ Π̂1 is a 4-dimensional space, spanned by two planes
π̂ and π̂′ corresponding to elements π and π′ of F in Π2. The plane π̄1 lies in the
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5-dimensional space Π̂1 and thus it intersects the 4-dimensional space Π2 ∩ Π̂1,
and therefore Π2, in at least a line.

Consider again the intersection line ` = Π2 ∩ π of an element π of F in Π1

with Π2. This line contains q + 1 − δ2 points lying on an element of F in Π2

and δ2 contact points (Lemma 19 and Lemma 28). So the points of ` do not lie
in an other element of F in Π1.

Now ` and π ∩ π̄1 intersect in a point, since both lines lie in the plane π̂
defined by Lemma 26. This point must be a contact point, for else, it lies in a
second plane of F in Π1, but this was excluded in the preceding paragraph.

So π shares a contact point with Π2, which also lies on the intersection line
of Π2 with π̄1.

This proves that the line π̄1 ∩ Π2 intersects the dual arc in π̄1, consisting
of lines of the form π̄1 ∩ π, where π is an element of F in Π1, only in contact
points, i.e. π̄1 ∩Π2 only contains points covered by at most one element of F .

This proves the theorem. �

Lemma 30
Let Π1 and Π2 be two big 2n-dimensional spaces with the property that 〈Π1,Π2〉
is a (3n − 1)-space. Assume that Π1 and Π2 share no element of F and let
q+1−δ1 be the number of elements of F in Π1 and let q+1−δ2 be the number
of elements of F in Π2.

Let π̄1 and π̄2 be the planes in Π1 and Π2 which exist by Lemma 19.
Then the lines L1 = {π̄2 ∩ Π1} ∪ {π1 ∩ Π2 | π1 ∈ F , π1 ⊂ Π1} and L2 =

{π̄1 ∩ Π2} ∪ {π2 ∩ Π1 | π2 ∈ F , π2 ⊂ Π2} are lines of two opposite reguli of a
hyperbolic quadric Q+(3, q).

Especially this implies that δ1 > 0 and δ2 > 0 since a regulus has only q+ 1
lines, and that π̄2 ∩Π1 and π̄1 ∩Π2 are concurrent.

Proof. By Lemma 28, we know that the elements of F in Π1 intersect Π2 in
pairwise skew lines. Thus L′1 = {π1∩Π2 | π1 ∈ F , π1 ⊂ Π1} and L′2 = {π2∩Π1 |
π2 ∈ F , π2 ⊂ Π2} are sets of pairwise skew lines. Since π1∩π2 ⊂ Π1∩Π2, every
line of L′1 intersects every line of L′2.

Since both sets contain more than 2 lines, it follows that the lines of L′1 and
L′2 are lines of opposite reguli.

Now consider the line π̄2 ∩ Π1, which exists by Lemma 29. By Lemma 28,
the plane π̄2 is skew to all elements of F in Π1. Thus π̄2 ∩ Π1 is different
from all lines in L′1. But every element π2 of F , contained in Π2, has a line
in common with π̄2. Thus π̄2 ∩ Π1 intersects all lines of L′2. This proves that
L1 = {π̄2 ∩ Π1} ∪ L′1 are the lines of a regulus. By symmetry, the same is true
for L2. �

Recall that the final goal is to prove that F is given by Construction 1. Thus
every element of F should correspond to a point of PG(n, q). Since F has only
qn+1−1
q−1 − δ elements, δ points of PG(n, q) are not used in Construction 1. The

next lemma will identify these holes.
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Consider the linear space L with the elements of F as points and the 2n-
spaces generated by two elements of F as lines. This is a linear space with
qn+1−1
q−1 − δ points.

As planes of L, we define the (3n−1)-dimensional spaces generated by three
elements of F .

Lemma 31
Every plane of L is a projective plane of order q with possibly some holes.

Proof. Let P be a (3n − 1)-dimensional space generated by three elements of
F .

Let Π ⊂ P be a 2n-dimensional space that contains q + 1 elements of F .
This 2n-space Π exists since there are q+ 1 different big 2n-dimensional spaces
through an element π of F in P and at most δ of them contain less than q + 1
elements of F (Corollary 25). Let Π′ be an other big 2n-dimensional space in
P . By Lemma 30, we know that Π and Π′ share an element of F .

Let Π1 and Π2 be two big 2n-dimensional spaces in P . Let π be an element
of F in Π1, but not in Π2. Since Π2 contains at least q + 1− δ elements of F ,
there must be at least q + 1− δ big 2n-dimensional spaces in P through π.

At most δ of the qn−1
q−1 different big 2n-dimensional spaces through π contain

less than q + 1 elements of F (Corollary 25). Each of the at least q + 1 − δ
elements of Π2 spans together with π a big 2n-dimensional space in P . Thus
there are at least q + 1 − 2δ ≥ 2 big 2n-spaces in P through π which contain
exactly q+ 1 elements of F . We denote these 2n-dimensional spaces by Π1 and
Π2.

By the same arguments we find an additional 2n-dimensional space Π3 which
contains q+1 elements of F , and which intersects Π1 and Π2 in different elements
of F .

Thus that plane P of L contains a triangle Π1, Π2, Π3, and each side of the
triangle contains q + 1 points of L. Every other big 2n-dimensional space in P
intersects Π1, Π2 and Π3 in elements of F (Lemma 30), thus a direct counting
argument shows us that P contains (q − 1)2 + 3(q − 1) + 3 = q2 + q + 1 lines of
L, where (q − 1)2 is the number of lines intersecting the side of the triangle in
different points, 3(q − 1) is the number of lines through a vertex different from
the sides and 3 is the number of sides of the triangle. The number of elements
of F in P is at most q2 + q + 1 (by Lemma 16) and at least q2 + q + 1− δ (by
Corollary 25).

Now consider any line ` of P with q+1−x points (x ≥ 1). Then q(q+1−x)
lines intersect ` and thus there are xq lines skew to `. Every point not on ` lies
on x lines that do not intersect `. Thus there must exist a point not on ` that
lies on a line `′ disjoint to ` with at least [q2+q+1−δ−(q+1−x)]x

qx > q − 1 points.
By Lemma 30, `′ has q points.

As we have seen above, there are q lines of P skew to `′ and every point
not on `′ lies on such a line. We may extend L by a point that lies on `′ and
all lines skew to `′. Extending L stepwise by at most δ points, we obtain a
2− (q2 + q + 1, q + 1, 1) design, i.e. a projective plane of order q. �

22



Lemma 32
Let F be a dual arc that satisfies the assumptions of Theorem 13. Let δ > 0,
then F is not maximal.

Proof. Since δ > 0, we find a big 2n-space which contains less than q + 1
elements of F (Corollary 25). Every (3n − 1)-dimensional space spanned by
three elements of F through such a 2n-space contains less than q2 + q + 1
elements of F . Let P be such a (3n− 1)-space.

Select a 2n-space Π in P that contains exactly q elements of F . Such a space
exists, because by Lemma 31, the linear space L is a projective plane with at
most δ holes and such linear spaces contain lines with exactly q points.

Consider the (3n − 1)-spaces through Π generated by three elements of F .
By Lemma 31, these (3n − 1)-spaces define projective planes with holes. We
will call a big 2n-space Π′ parallel to Π if it ”goes through” the unique hole of
Π in the corresponding projective plane defined by Lemma 31.

The 2n-spaces parallel to Π partition the set F . By Corollary 27, we know
that every big 2n-space lies in qn−1−1

q−1 different (3n−1)-spaces spanned by three
elements of F . Thus there are exactly

q

(
qn−1 − 1
q − 1

)
+ 1 =

qn − 1
q − 1

2n-spaces parallel to Π, including Π itself.
Consider two big 2n-spaces Π1 and Π2 parallel to Π. If Π2 6⊂ 〈Π,Π1〉,

then 〈Π,Π1,Π2〉 is a (4n − 3)-dimensional space (Property (4)). Since 2n <
dim 〈Π1,Π2〉 < dim 〈Π,Π1,Π2〉 = 4n−3, Property (4) implies that dim 〈Π1,Π2〉
= 3n− 1. Thus any two elements in the parallel class satisfy the conditions of
Lemma 29 and Lemma 30, i.e. they lie in a (3n− 1)-space.

Let q be odd. Choose any 2n-space Π′ parallel to Π which contains exactly q
elements of F . By a direct counting argument we find that at least qn−1

q−1 −(δ−1)

of the qn−1
q−1 elements in the parallel class have this property. Then by Lemma 28,

the plane π̄′ of Π′ contains exactly one line of contact points. By Lemma 29,
these lines must lie in the common intersection Ω of all 2n-spaces parallel to Π.
Thus Ω contains qn−1

q−1 − (δ − 1) lines of contact points that share a common
point Q (Lemma 30). This proves that Ω is an n-dimensional space; it cannot be
bigger by Lemma 23. Now look at any big 2n-space Π′′ parallel to Π containing
q + 1 − δi elements of F . By Lemma 29 and Lemma 30, the plane π̄′′ must
share a line through Q with every other 2n-space parallel to Π. This line must
lie in Ω since otherwise π̄′′ would need different lines for each 2n-space. Thus
Ω contains qn−1

q−1 lines of contact points through Q, i.e., it only contains contact
points and we can extend F by Ω.

For q even, the situation is more complicated. We have always two lines of
contact points and we must choose the correct one. Let Π1 be a 2n-space which
contains exactly q elements of F . By Lemma 29, the plane π̄1 of Π1 must share
a line of contact points with each 2n-space parallel to Π1. By the pigeon hole
principle there are at least 1

2 [ q
n−1
q−1 − δ] different 2n-spaces parallel to Π1, which
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contain q elements of F and which intersect π̄1 in the same line `1 of contact
points.

Let Π2 and Π3 be two such spaces. Choose Π2 and Π3 such that dim(Π1 ∩
Π2 ∩ Π3) = n. For n = 2, this is always the case since the intersection of
three 4-spaces in a 5-space is at least a plane, and since Lemma 23 states that
dim(Π1 ∩ Π2 ∩ Π3) ≤ 2. For n > 2, we can choose Π2 and Π3 such that
dim 〈Π1,Π2,Π3〉 = 4n − 3 and then we obtain dim(Π1 ∩ Π2 ∩ Π3) = n by the
dimension formula.

Let `2 be the line π̄2∩Π1. Consider the hyperbolic quadric with the two reguli
L1 = {π̄2 ∩Π1} ∪ {π1 ∩Π2 | π1 ∈ F , π1 ⊂ Π1} and L2 = {π̄1 ∩Π2} ∪ {π2 ∩Π1 |
π2 ∈ F , π2 ⊂ Π2} (see Lemma 30).

Then Π3 contains the line `1 = π̄1 ∩ Π2 of this hyperbolic quadric since
Π1 shares the same line of π̄1 with Π2 and Π3. Hence, Π3 must contain a
second line of this hyperbolic quadric. We prove this as follows. We know that
dim(Π1 ∩Π2) = n+ 1 and that dim(Π1 ∩Π2 ∩Π3) = n. The hyperbolic quadric
L1 ∪ L2 cannot lie in Π1 ∩ Π2 ∩ Π3, or else every space π1 ∈ F of Π1 shares
the same line with Π2 and Π3. Then some points of this line necessarily lie on
three elements of F (false). So Π1 ∩Π2 ∩Π3 intersects the solid containing the
hyperbolic quadric L1 ∪ L2 in a plane. This plane contains already one line `1
of this hyperbolic quadric L1 ∪ L2, so it contains a second line of L1 ∪ L2.

But for each π1 ∈ Π1, we find that the line π1 ∩ Π2 cannot lie in Π3 since
otherwise π1 ∩Π2 would meet q elements of F in Π2 and q elements of F in Π3,
a contradiction. Thus `2 = π̄2 ∩ Π1 must be the second line of the hyperbolic
quadric in Π3.

By symmetry, we also find that π̄3 intersects Π1 and Π2 in the same line.
Applying this argument for all the 1

2 [ q
n−1
q−1 − δ] + 1 different parallel spaces

found in the first step, we obtain a space Ω in the common intersection which
contains 1

2 [ q
n−1
q−1 − δ] + 1 different lines of contact points. This proves that Ω

must have dimension n and we can copy the final steps of the case q odd to
prove that Ω contains only contact points. �

Concluding arguments. Applying Lemma 32 precisely δ times, we find that
F can be extended to a dual arc F ′ of size qn+1−1

q−1 . Even in the case q even,
no 2n-dimensional space contains exactly 2 elements of F ′. By Result 12, this
implies that F ′ is the dual arc given by Construction 1. As we know from
Theorem 11, in the case q even this dual arc can be extended by one extra
element.
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