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Abstract. In this article, we prove a spectrum result on maximal partial

ovoids of the generalized quadrangle Q(4, q), q odd, i.e. for every integer k

in the interval [a, b], where a ≈ 3

5
q2 and b ≈ 9

10
q2, there exists a maximal

partial ovoid of Q(4, q), q odd, of size k. Since the generalized quadrangle

W(q) defined by a symplectic polarity of PG(3, q) is isomorphic to the dual

of the generalized quadrangle Q(4, q), the same result is obtained for maximal
partial spreads of W(q), q odd. This article concludes a series of articles on
spectrum results on maximal partial ovoids of Q(4, q), on spectrum results
on maximal partial spreads of W(q), on spectrum results on maximal partial
1-systems of Q+(5, q), and on spectrum results on minimal blocking sets with
respect to the planes of PG(3, q). We conclude this article with the tables

summarizing the results.

1. Introduction

A generalized quadrangle Γ is an incidence structure consisting of points and
lines such that:

(a) any two distinct points are on at most one line,
(b) every line is incident with s + 1 points and every point is incident with

t + 1 lines,
(c) if a point P is not incident with the line `, then there is exactly one line

through P intersecting `.

The generalized quadrangle Γ is said to have order (s, t) or order s if s = t; the
number of points of Γ is (s + 1)(st + 1) and the number of lines is (t + 1)(st + 1).
Dualizing Γ, we get a generalized quadrangle of order (t, s). For more information
on generalized quadrangles, we refer to [5].

An ovoid O of a generalized quadrangle Γ is a set of points such that every line
of Γ contains exactly one point of O. A partial ovoid O of Γ is a set of points such
that every line of Γ contains at most one point of O, and O is called maximal if it
is not contained in a larger partial ovoid.
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Let Q(4, q) be a non-singular parabolic quadric in the projective space PG(4, q);
the set of points and the set of lines of Q(4, q) form a generalized quadrangle of
order q. The points of PG(3, q) and the self-polar lines of a symplectic polarity σ
of PG(3, q) form the generalized quadrangle W(q) of order q, which is isomorphic
to the dual of Q(4, q). The size of an ovoid of a generalized quadrangle Γ of order
(s, t) is st + 1, hence an ovoid of Q(4, q) has size q2 + 1.

There is an interest for the size of maximal partial ovoids of Q(4, q); in [2], the
authors prove that the size of the smallest partial ovoid of Q(4, q) is q + 1 if q is
even and at least 1, 419q if q is odd, while in [1] the authors prove that the size of
the largest maximal partial ovoid, different from an ovoid, is q2 − q + 1 if q is even,
and in [3], that it is at most q2 − 3 when q is odd and not a prime. In [6], the
authors prove a spectrum result for the size of maximal partial ovoids of Q(4, q), q
even; that is, they find an interval [a, b], where a ≈ q2/10 and b ≈ 9

10q2, such that
for every integer k ∈ [a, b], there exists a maximal partial ovoid of Q(4, q), q even,
of size k. The aim of this article is to prove a similar result for Q(4, q), q odd.

2. The technique

We apply the idea behind the construction presented in [9] which is used to find
minimal blocking sets in PG(2, q2). They consider a particular minimal blocking
set in the plane PG(2, q2), namely the Hermitian curve H(2, q2), then replace q of
the points lying on a secant line ` by the point `⊥. They obtain in this way a new
minimal blocking set of the plane, but of a smaller size. It is clear that in this
construction the polarity of the Hermitian curve plays an important role, and so it
does also in ours.

The quadric Q(4, q), q odd, induces a polarity ⊥ in PG(4, q) and we will widely
use that polarity. The points of Q(4, q) are called singular ; if two singular points
are joined by a line contained in Q(4, q), we will say that they are collinear (in
Q(4, q)); finally, every line ` not contained in Q(4, q) intersects Q(4, q) in 0, 1, or 2
points, and so ` is called external, tangent, or secant, respectively. For more details
about polarities, see [10].

We proceed as in the article [6], but with certain variations. From now on, we
assume q to be odd. Let Q−(3, q) be an elliptic quadric of Q(4, q) contained in a
hyperplane Σ of PG(4, q); no line ` of Q(4, q) can be contained in Σ since Q−(3, q)
does not contain lines, so ` intersects Q−(3, q) in exactly one point. Hence, Q−(3, q)
is an ovoid of Q(4, q) and it is also called the classical ovoid of Q(4, q). Let now π
be a plane of Σ that intersects Q−(3, q) in a conic; the line π⊥ can be either secant
or external; in the first case we call the plane π good, in the second case bad. For
more information we refer to [4]. If π is a good plane and we delete the points of
π ∩ Q−(3, q) from Q−(3, q) and add the points of π⊥ ∩ Q(4, q), we obtain a set Θ
of size q2 − q + 2. If P ∈ π⊥ is a singular point, then P⊥ ∩ Σ = π, hence if a line
` ⊂ Q(4, q) intersects π⊥ in P , then ` intersects Σ in a point of π, so Θ is a partial
ovoid of Q(4, q). Moreover, if we add a point R 6∈ π⊥ to Θ, then R⊥ ∩Σ is a plane
(different from π) containing a conic, so there would be lines of Q(4, q) with two
points. Hence, we can conclude that Θ is a maximal partial ovoid of Q(4, q) of size
q2 − q + 2. In order to obtain a spectrum result for the size of Θ, we can delete the
points of more conics of Q−(3, q) contained in good planes π and replace them by
the singular points of π⊥. While doing this, we need to check that:
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• Θ is a partial ovoid, that is, the points we add must not be collinear in
Q(4, q),

• Θ is maximal,
• the planes π we use in this construction have a polar line π⊥ which is a

secant line, and

furthermore we need to compute the exact number of the singular points of the
planes π we are using.

3. The construction

3.1. The parabolic quadric Q(4, q) considered.

Figure 1: Set 1 of conics of Q−(3, q) in planes through ` and set 2 of conics

We first name the important elements involved in the construction. This in-
cludes: (1) the parabolic quadric Q(4, q), (2) in a particular hyperplane Σ, the el-
liptic quadric Q−(3, q) contained in Q(4, q), (3) a fixed line ` in Σ skew to Q−(3, q),
and (4) the polar points R1 and R2 of ` with respect to Q−(3, q). There is also
a cyclic group C of order q + 1 fixing R1 and R2, and stabilizing Q−(3, q) which
plays an important role in the construction of the maximal partial ovoids on Q(4, q).

Let {(x0, x1, x2, x3)||x0 ∈ Fq2 , x1, x2, x3 ∈ Fq} be the underlying vector space
of PG(4, q) and let

Xq+1
0 + X1X2 + X2

3 = 0
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be the equation of the particular quadric Q(4, q). If P = (a0, a1, a2, a3), then P⊥

is the hyperplane with equation Tr(aq
0X0) + a2X1 + a1X2 + 2a3X3 = 0, where Tr

is the trace function from Fq2 to Fq. The hyperplane Σ has equation X3 = 0 and

Σ ∩ Q(4, q) is the elliptic quadric Q−(3, q) with equation Xq+1
0 + X1X2 = 0; the

line ` = {(x0, 0, 0, 0)||x0 ∈ Fq2} is an external line contained in Σ and `⊥ ∩ Σ is a
line intersecting Q−(3, q) in two points: R1 = (0, 1, 0, 0) and R2 = (0, 0, 1, 0).

Let C be the set of the elements x of Fq2 such that xq+1 = 1; C is a cyclic
(multiplicative) group of order q+1 and let η be its generator. By abuse of notation,
we denote by C also the cyclic group of collineations of PG(4, q) acting as follows:

(x0, x1, x2, x3) 7−→ (ηix0, x1, x2, x3).

The group C clearly fixes the quadrics Q(4, q) and Q−(3, q), the line `, and the
points R1 and R2.

We assume that the cyclic group C of collineations of PG(4, q) described above
is generated by the collineation α. For a given plane π in Σ, we denote its image
under αi by πi. In particular, there is one involution in C, the transformation
α(q+1)/2 : (x0, x1, x2, x3) 7−→ (−x0, x1, x2, x3), and then π(q+1)/2 is the image of
the plane π under this involution.

The two sets of planes we want to use in our construction of maximal partial
ovoids are all contained in the hyperplane Σ, hence we omit the equation X3 = 0
each time and we just use the equations that describe them in Σ : X3 = 0. Precisely,
they are the following:

Set 1: The q − 1 planes through ` intersecting Q−(3, q) in a conic. Each of
these planes π has equation: X1 + aX2 = 0, with a 6= 0, and π ∩ Q−(3, q) =
{(x,−a, 1, 0)||xq+1 = a}. Every plane in this set is fixed by C and the points of
such a conic form an orbit under the action of the group C. These planes do not
intersect each other in singular points, of course.

Set 2: One orbit (of size q + 1) under the action of C among the q2 − 1 planes
through R1, but not through R2, intersecting Q−(3, q) in a conic. Such planes π
have equation: Tr(AηiX0) + X2 = 0, with A ∈ Fq2 \ {0} and i = 0, . . . , q.

3.2. Discussion of the intersection of the conics of set 1 with the

conics in set 2. We are interested in how the conics of Q−(3, q) in the planes of
set 2 intersect each other, that is whether two planes π1 and π2 in one orbit under
the cyclic group C of order q + 1 intersect in a secant or a tangent line. Applying
the polarity induced by Q−(3, q), this is equivalent to investigating whether the two
polar points π⊥

1 and π⊥
2 w.r.t. Q−(3, q) lying in the plane R⊥

1 : X2 = 0 generate
an external or a tangent line w.r.t. Q−(3, q). If π1 has equation Tr(AX0) +
X2 = 0, then π⊥

1 = (Aq, 1, 0, 0) and the orbit of this point under C consists of the
points (Aqηi, 1, 0, 0), i = 1, . . . , q + 1; this is the conic of the plane R⊥

1 of equation

Aq+1X2
1 = Xq+1

0 . The only lines tangent to Q−(3, q) in these planes are the ones
through R1 = (0, 1, 0, 0) and the only tangent line through π⊥

1 is the one joining
π⊥

1 = (Aq, 1, 0, 0) to (−Aq, 1, 0, 0). Note that these two points are each others image
under the involution α(q+1)/2.

Going back to the planes of set 2, this means that for every fixed plane π in
this set, there exists only one plane in the same orbit of π under C that intersects
π in a tangent line through R1. From the preceding paragraph, it follows that π
and its image under the involution α(q+1)/2 intersect in a tangent line to Q−(3, q).
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The other planes under the orbit of C intersect π in a secant line and, since any
three points π⊥

1 , π⊥
2 , and π⊥

3 are never collinear, the secant lines are all different,
for every π⊥

i , i = 1, 2, 3, in the same orbit under the cyclic group C.

We also need to investigate how two planes of the two different sets intersect
each other. The line ` intersects a plane π of set 2 in just one point, say P , and of
course P is a non–singular point. Since the plane generated by ` and R1 is tangent
to Q−(3, q), the line 〈P,R1〉 is a tangent line with respect to the conic π∩Q−(3, q),
hence there is exactly one other tangent line to π ∩ Q−(3, q) through P . This
means that there is one other plane in set 1 that intersects a plane of set 2 in a
tangent line, q−1

2 planes intersect in a secant line, and the remaining q−1
2 planes in

an external line.

3.3. Determining the good planes in set 1 and finding a set 2 com-

pletely consisting of good planes. Let π be a plane in one of these two sets:
we want to replace the singular points of π by the common singular polar points,
i.e. by the singular points of π⊥. Since q is odd, the plane π⊥ with respect to the
polarity induced by Q(4, q) can be either a secant or an external line and, of course,
we need to avoid the latter case.

A plane π1 in set 1 in PG(4, q) has equations:

{

X1 + aX2 = 0,
X3 = 0,

with a 6= 0,

hence π⊥
1 is the line 〈(0, a, 1, 0), (0, 0, 0, 1)〉. It is easy to check that π⊥

1 is a secant
line if and only if −a is a non-zero square in Fq, hence there are q−1

2 good planes
in set 1.

If π2 is a plane of set 2, then it has as equations:

{

Tr(AX0) + X2 = 0,
X3 = 0,

with

A 6= 0, so π⊥
1 is the line 〈(Aq, 1, 0, 0), (0, 0, 0, 1)〉 and this is a secant line if and only

if −Aq+1 is a non-zero square in Fq. Hence, in one orbit under C, the planes are
all of the same type, so we can assume that in our case all the planes of set 2 are
good.

Moreover, for our construction, it is useful to know which planes in set 1

that intersect the planes of set 2 in a secant line are good. Again, we look at
their polar points (0, a, 1, 0) and (Aq, 1, 0, 0) w.r.t Q−(3, q), and we have the line
〈(0, a, 1, 0), (Aq, 1, 0, 0)〉. The two planes intersect in two singular points if and only
if this polar line 〈(0, a, 1, 0), (Aq, 1, 0, 0)〉 is external to Q−(3, q). In our setting, this
polar line is an external line if and only if 1 − 4aAq+1 is a non-square, a bisecant
line if and only if 1 − 4aAq+1 is a non-zero square, and a tangent line if and only
if 1 − 4aAq+1 is zero. In this last case, a = 1/(4Aq+1), so −a = 1/(4(−Aq+1)) is
a non-zero square in Fq since −Aq+1 is a non-zero square in Fq. We conclude that
there is one good plane in set 1 tangent to all the conics of set 2.

Since we consider an element A such that −Aq+1 is a non-zero square and since
−a is a non-zero square for a good plane in set 1, we first determine how many
times 1− 4(−a)(−Aq+1) is a non-zero square. This is related to finding how many
x2 6= 0 satisfy the equation 1−x2 = y2. This is the equation of an affine conic that
has two points at infinity if −1 is a square, i.e. q ≡ 1 mod 4, or none otherwise,
when q ≡ 3 mod 4. There are always two points corresponding to y = 0 and there
are always two points corresponding to the value x = 0, so there are q−5

4 (resp.
q−3
4 ) values of x2 6= 0 for q ≡ 1 mod 4 (resp. for q ≡ 3 mod 4) that satisfy the

equation 1 − x2 = y2. Hence, among the (q − 1)/2 good planes in set 1, there is
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one tangent to the conics of set 2 and (q − 5)/4 skew to the conics of set 2. More
precisely, if a = 1

4Aq+1 , then the corresponding good plane in set 1 intersects all

the planes in set 2 in a tangent line and there are q−1
2 − 1 − q−5

4 = q−1
4 (resp.

q−3
4 ) good planes in set 1 that intersect the planes of set 2 in two singular points

if q ≡ 1 mod 4 (resp. if q ≡ 3 mod 4).
We summarize the results of this paragraph in the following lemma.

Lemma 3.1. There is one good plane of set 1 that intersects all the planes in

set 2 in a tangent line and there are q−1
4 (resp. q−3

4 ) good planes in set 1 that

intersect the planes of set 2 in a secant line if q ≡ 1 mod 4 (resp. if q ≡ 3 mod 4).

3.4. Replacing deleted good conics of Q−(3, q) by their polar points.

When we replace the points of a good conic of Q−(3, q) by their common polar
points, we need to check that the new set is still a partial ovoid, meaning the points
added are not collinear in Q(4, q) among themselves and with the other points of
the partial ovoid.

Figure 2: Polar points of the good conics in set 1 and of the conics in set 2

For every point P 6∈ Σ that we add, we know that P⊥∩Q−(3, q) is a conic that
we have thrown away, so none of its lines of Q(4, q) is collinear with a point still in
Σ. We need to make sure that the points out of Σ which we add are not collinear
with each other since we want to construct a new partial ovoid on Q(4, q). The
polar lines of the good planes of set 1 are the lines through the point Σ⊥ in the
plane `⊥ secant to the conic of Q(4, q) contained in `⊥; of course they are two by
two not collinear. The polar lines of the planes in set 2 are the lines in R⊥

1 through
the point Σ⊥ and they are secant to the tangent cone contained in R⊥

1 . Using
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coordinates, the points of intersection are: (ηiAq, 1, 0,±
√
−Aq+1), where

√
a is one

of the two elements in Fq whose square is a. They form two conics in the hyperplane

R⊥
1 : X2 = 0, one in the plane X3 =

√
−Aq+1X1 and the other one in the plane

X3 = −
√
−Aq+1X1; a point (ηiAq, 1, 0,

√
−Aq+1) of the first conic is collinear on

Q(4, q) with the point (−ηiAq, 1, 0,−
√
−Aq+1), which means the polar points of

the conic of the plane π ∈ set 2 are collinear with a polar point of the conic of
π(q+1)/2, where π(q+1)/2 is the image of π under the collineation of C of order two.
Let now (0, a, 1,

√−a) be one of the polar points added in place of a good plane of

set 1 with equations

{

X1 + aX2 = 0,
X3 = 0,

; it is collinear with (ηiAq, 1, 0,±
√
−Aq+1)

if and only if a = 1
4Aq+1 , thus when the plane in set 1 intersects the planes of set

2 in a tangent line.

3.5. Constraints on the parameters involved. We now have to find the
constraints on the parameters that are required to obtain a non-interrupted interval
of sizes k for maximal partial ovoids on Q(4, q).

Figure 3: The parameters r and s involved in the construction

Let s be the number of planes of set 1 that we do not replace, let t be the
number of planes in set 2 that we replace, let r be the number of planes in set 1

that we do not replace and that intersect the planes in set 2 in a secant line, and
let u be the number of points, different from R1, in which the conics in the planes
of set 2 thrown away intersect each other. We have indicated these s and r planes
of set 1 in Figure 3. In order to get a partial ovoid after the replacement, we need
to impose:
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1 ≤ t ≤ q + 1

2

since set 2 consists of one orbit of good planes under the action of C, but in order
to avoid collinear polar points, if we replace the points of the plane π in set 2,
we can not replace the points of π(q+1)/2, since they have collinear polar points
on Q(4, q) (Subsection 3.4), hence we can replace at most the points of the planes
πi, i = 1, . . . , q+1

2 .
Moreover, we have

q + 1

2
≤ s ≤ q − 1,

because there are q−1
2 bad planes in set 1, which we do not replace, and there is

also the good plane through ` that intersects the planes of set 2 in a tangent line,
hence the polar points added would be collinear if we would throw away this plane,
so we can not replace the points of at least q+1

2 planes through `.
In this way, we know that the newly constructed set Θ is a partial ovoid of

Q(4, q), but Θ has to be also maximal, hence for every point P of Q(4, q)\Θ, there
exists at least one point of P⊥ in Θ. This is of course true for every point of Σ; let
P be a point of Q(4, q) not in Σ and let πP be the plane P⊥ ∩ Σ: we impose that
πP ∩ Θ 6= ∅. We have different cases:

1) ` ⊆ πP : the other planes of set 1 do not intersect πP in any singular
point, while the planes of set 2 can intersect πP in at most two points,
hence we impose that t < q+1

2 to make sure that πP ∩ Θ 6= ∅.
2) ` 6⊆ πP and R2 ∈ πP : R2 is not contained in any of the conics of Q−(3, q)

that we throw away, so πP contains always at least the point R2 of Θ.
3) ` 6⊆ πP , R1 ∈ πP and R2 /∈ πP ; in this case we have two subcases:

3.a) πP is one of the planes of set 2: this plane is tangent to a particular
plane π of set 1 in one singular point P ′; the conic of the plane π
is not deleted (see the condition for s above) and the other planes of
set 2 intersect πP in points different from P ′, hence we know that
the point P ′ is never thrown away from πP .

3.b) πP is in another orbit under the action of C. Let πP : Tr(A′X0) +
X2 = 0. Checking the four distinct cases for (−A′q+1, q), −A′q+1 is
a non–zero square or a non–square, q ≡ 1 mod 4 or q ≡ 3 mod 4, if
we impose t < q−1

2 , then the good planes of set 1 and the t deleted
conics of set 2 cannot cover all the points of the conic of πP .

4) ` 6⊆ πP and R1 and R2 /∈ πP : the planes of set 1 intersect πP in at most
2 singular points. We consider the following two cyclic groups fixing the
line `: the group C1 of size q−1

2 that acts regularly on the good planes
through `, and the group C2 that acts regularly on the planes through `
that intersect πP in a secant line, so C2 has size q+1

2 or q−1
2 , according

to the fact that through ` there are zero or two planes intersecting πP in
a tangent line. Since these two groups fix a line in a three–dimensional
space, we can assume that C1 and C2 are subgroups of PGL(2, q), so we
can use Theorem 3.4, Theorem 3.5, and Corollary 3.6 of [8] and state
that the good planes of set 1 intersecting πP in a secant line are at most
q+3

√
q

4 . In order to keep at least one of the points of the conic of πP in



A SPECTRUM RESULT ON MAXIMAL PARTIAL OVOIDS OF THE GENERALIZED QUADRANGLE Q(4, q), q ODD9

Θ, we need to impose 2t + 2 +
q+3

√
q

2 < q + 1, where 2t comes from the at
most 2t intersection points of the t deleted conics of set 2 with πP , and
where 2 comes from the at most two tangent points of the two possible
good planes through ` tangent to πP .

To conclude, we have the following new constraint for t:

t <
q − 3

√
q − 2

4
.

Finally, for the parameter r we have:

a) q−1
4 ≤ r ≤ s − q−1

4 − 1 for q ≡ 1 mod 4, and q+1
4 ≤ r ≤ s − q−3

4 − 1 for
q ≡ 3 mod 4,

b) s = 3
4 (q − 1) ⇒ q−1

4 ≤ r ≤ q−1
2 − 1 for q ≡ 1 mod 4, and s = 3q−1

4 ⇒
q+1
4 ≤ r ≤ q−1

2 for q ≡ 3 mod 4,

c) s > 3
4 (q − 1) for q ≡ 1 mod 4, and s > 3q−1

4 for q ≡ 3 mod 4 ⇒ s− q−1
2 ≤

r ≤ q−1
2 .

We give a brief explanation for the case q ≡ 1 mod 4. We know that there are
q−1
4 (resp. q+1

4 for q ≡ 3 mod 4) bad planes in set 1 that intersect the planes of
set 2 in a secant line (Lemma 3.1). These bad planes are never thrown away, hence
we always have q−1

4 ≤ r ≤ q−1
2 . But the parameter r also depends on s. More

precisely, these r planes are a subset of the s planes in set 1 we have not replaced
and among them we know that there is one good plane that intersects the planes
of set 2 in a tangent line (Lemma 3.1) and there are q−1

4 (resp. q−3
4 ) bad planes

that intersect the planes of set 2 in an external line (resp. for q ≡ 3 mod 4), hence
we have r ≤ s − q−1

4 − 1 (resp. r ≤ s − q−3
4 − 1 for q ≡ 3 mod 4). Finally, from

a certain value for s, as the value of s increases, also r does. There are (q − 3)/2
conic planes in set 1 skew to the conics of set 2, and there is one good plane in set

1 tangent to all the conics of set 2. Hence, if s− q−1
2 is larger than the number of

bad planes in set 1 that intersect planes in set 2 in a secant line, then r ≥ s− q−1
2 ,

hence s > 3
4 (q − 1) ⇒ s − q−1

2 ≤ r. The constraints mentioned before arise just by
the comparison of these upper and lower bounds.

For every fixed s, t, r, and u, we get that the size of the maximal partial ovoid
Θ on Q(4, q) is s(q − 1) + 2q − 2tr + t + u− 1. This is proven in the following way.

We do not replace s of the conics of set 1; equivalently, we replace q − 1− s of
the conics of set 1 by their two polar points. This changes the size of the ovoid, i.e.
the elliptic quadric Q−(3, q), from q2 +1 to q2 +1−(q−1−s)(q+1)+2(q−1−s) =
s(q−1)+2q. We then delete the points of t conics in set 2. But some of the points
of these t conics are already deleted. There are r conics in set 1 that are not
deleted and that intersect the conics of set 2 in two points. There is one good
plane in set 1 tangent to all the conics of set 2, and also this conic is not deleted.
Also the point R1 belonging to all the conics in set 2 has not yet been deleted. So
2r+1+1 points in every conic of set 2 still belong to the already constructed set of
size s(q − 1) + 2q. The t conics in set 2 that will be deleted, and replaced by their
polar points, intersect, by assumption, in u points, different from R1. So we only
delete t(2r +1)+1−u points from these t conics of set 2, and these 2tr + t−u+1
points are replaced by the 2t polar points of these t conics of set 2. Hence, the size
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of the newly constructed set Θ is

s(q − 1) + 2q − 2tr − 1 − t + u + 2t = s(q − 1) + 2q − 2tr + t + u − 1.

3.6. Selection of t = 5 conics of set 2. In order to get a non-interrupted
interval of values for the size of Θ, we proceed as in [6], i.e. we select five planes
in set 2 such that their ten intersection points (different from R1) are partitioned
in four planes of set 1, namely πi, i = 1, . . . , 4, contains i of these points. In this
way, we set t = 5 and choosing the planes in set 1 in a suitable way, we can let
the parameter u vary from 0 to 10, so we immediately get the first non-interrupted
interval

[(s + 2)q − s + 4 − 10r, (s + 2)q − s + 14 − 10r].

As in [6], we consider a plane π in set 2 and the planes πi, i = 1, . . . , 4, which are
the image of π under α, where α is a generator of the cyclic group C; the intersection
points are the following: π ∩ πi = Pi, i = 1, . . . , 4, π1 ∩ πi = P 1

i−1, i = 2, 3, 4,

π2 ∩ πi = P 2
i−2, i = 3, 4, and π3 ∩ π4 = P 3

1 (here, similarly, P k
j denotes the image

of the point Pj under αk. In [6], it is proved that, for q > 5, there exists a
plane π1 in set 1 that contains the points P1, P

i
1, i = 1, 2, 3, a plane π2 of set 1

that contains P2, P
i
2, i = 1, 2, a plane π3 of set 1 that contains P3 and P 1

3 , and
there is a plane π4 in set 1 that contains only the intersection point P4. The
main difference here, in comparison to [6], is that we have to check that the four
planes πi, i = 1, . . . , 4, in set 1 with the required property are good planes. If the
plane π has equation Tr(AX0) + X2 = 0, then the intersection π ∩ Q−(3, q) is the
conic {(Aq + Aηi, 1,−2Aq+1 − Tr(A2ηi), 0)||ηi ∈ C} = {(Aq + Aqηj , 1,−2Aq+1 −
Aq+1Tr(ηj), 0)||ηj ∈ C}. There is one plane in set 2 that intersects π in a tangent
line through R1. Every point of this conic in π, different from R1 and different
from one other particular point which is the intersection of π with the unique
good plane of set 1 tangent to the conic π ∩ Q−(3, q), is contained in just one
other plane of set 2, namely the point (Aq + Aηi, 1,−2Aq+1 − Tr(A2ηi), 0), ηi 6=
Aq−1, is contained in the plane with equation Tr(η−iAqX0) + X2 = 0 since we
have that Tr(η−iAq(Aq + Aηi)) = Tr(A(Aq + Aηi)) = 2Aq+1 + Tr(A2ηi). The
unique good plane of set 1 that is tangent to all the conics of set 2 is the plane
X1 + aX2 = 0, with a = 1

4Aq+1 (See Subsection 3.3). This contains the point

(Aq + Aηi, 1,−2Aq+1 − Tr(A2ηi), 0), ηi = Aq−1, so the point (2Aq, 1,−4Aq+1, 0).
The singular point in π ∩ π−j , j 6= (q + 1)/2, different from R1, is the point
Pj = (Aq +Aqη−j , 1,−2Aq+1−Aq+1Tr(ηj)). The point Pj is contained in the plane
of set 1 with equation X1 + aX2 = 0, with a = 1

Aq+1(2+Tr(ηj)) = 1
Aq+1(1+ηj)q+1 .

As we want these planes to be good, we need −a to be a non-zero square, that is
(1+ηj)q+1 is a non-zero square since −Aq+1 is a non–zero square, and this happens
if and only if 1 + ηj is a non-zero square in Fq2 . So we need to prove the following
lemma.

Lemma 3.2. Let C = 〈η〉 be the cyclic multiplicative group of the (q + 1)-th
roots of unity in the field of odd characteristic Fq2 , then 1 + ηi, ηi ∈ C \ Fq, is a

non-zero square in Fq2 if and only if i is even.

Proof. If we have 1 + η2i, then 1 + η2i = ηi( 1
ηi + ηi) = ηiTr(ηi); if ξ is

a primitive element of Fq2 , then we can say that η = ξq−1 and that a primitive
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element of Fq is ξq+1, so every element of C and every element of Fq are squares in
Fq2 , so ηiTr(ηi) is a square too.

Viceversa, if we have that 1+ηi = d2, for some non-zero d ∈ Fq2 , then 1+ηi =

d2 ⇒ ηi = d2 − 1 ⇒ 1 = (d2 − 1)q+1 ⇒ 1 = d2(q+1) + 1 − d2 − d2q ⇒ d2(q+1) =
d2+d2q ⇒ d2q = 1+d2(q−1) ⇒ d2 = 1+d2(1−q) = 1+ηi. Consequently, d2(1−q) = ηi

and hence i has to be even. �

So the planes to use are π, π2, π4, π6, π8, more precisely, for a given plane π of
set 2, π has intersection points π ∩ π2i = P2i, i = 1, . . . , 4, π2 ∩ π2i = P 2

2(i−1), i =

2, . . . , 4, π4 ∩ π2i = P 4
2(i−2), i = 3, 4, and π6 ∩ π8 = P 6

2 .

3.7. Determination of the non-interrupted interval for the sizes of

maximal partial ovoids on Q(4, q). Now we can calculate the non-interrupted
interval of values for the size of Θ. The case q ≡ 1 mod 4 and the case q ≡ 3 mod
4 need to be treated separately, but we omit the proof for the case q ≡ 3 mod 4.

Maintaining the same notations as before, we know that for a fixed value of s
and r, and for t = 5, choosing the planes in set 1 in a suitable way, i.e. using the
planes πi, i = 1, . . . , 4, of set 1, in the way described above, we can let vary the
parameter u from 0 to 10, so we immediately get the first non-interrupted interval

(3.1) [(s + 2)q − s + 4 − 10r, (s + 2)q − s + 14 − 10r].

But we now have slightly different constraints for the parameters, since we need
a certain freedom to take or not take the four planes πi, i = 1, . . . , 4, so for q ≡ 1
mod 4, we have:

a) q+1
2 + 4 ≤ s ≤ q − 5,

b) if s ≤ 3(q−1)
4 − 3, then q−1

4 + 4 ≤ r ≤ s − q−1
4 − 1,

c) if 3(q−1)
4 − 2 ≤ s ≤ 3(q−1)

4 + 3, then q−1
4 + 4 ≤ r ≤ q−1

2 − 4,

d) if s ≥ 3(q−1)
4 + 4, then s − q−1

2 ≤ r ≤ q−1
2 − 4.

The interval (3.1) has size 10, so if we let vary the parameter r and we fix s,
we still get a non-interrupted interval. Taking into consideration condition b), we
have the interval

(3.2) [s(q − 11) +
9q + 23

2
, s(q − 1) − q + 47

2
],

if s ≤ 3(q−1)
4 − 3, but if we want to let vary s too, we need to impose that s′(q −

11) + 9q+23
2 ≤ s(q − 1) − q+47

2 , where s′ = s + 1. By straightforward calculations,

we get 3q+12
5 ≤ s. Letting vary s in [3q+12

5 , 3(q−1)
4 − 3], then from (3.2), we get the

interval:

(3.3) [
6q2 + 3q − 149

10
,
3q2 − 20q − 79

4
].

From the condition c), we have the interval:

(3.4) [s(q − 1) − 3q + 49, s(q − 1) − q + 47

2
]
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and the size of this interval is 5q−145
2 ≥ q − 1 if q ≥ 143

3 , so we can let vary s from
3(q−1)

4 − 2 to 3(q−1)
4 + 3 in (3.4) and obtain the interval:

(3.5) [
3q2 − 26q + 207

4
,
3q2 + 4q − 103

4
].

Finally, from d), we have the interval:

(3.6) [s(q − 1) − 3q + 49, s(q − 11) + 7q + 9]

and to let vary s, we need to impose that s′(q−1)−3q+49 ≤ s(q−11)+7q+9, where

s′ = s + 1. In this way, we get s ≤ 9q−39
10 and so we let vary s in [3(q−1)

4 + 4, 9q−39
10 ]

in (3.6), and so we obtain the interval:

(3.7) [
3q2 − 2q + 183

4
,
9q2 − 68q + 519

10
].

It is clear that the intervals (3.3), (3.5), and (3.7) overlap if q ≥ 143
3 and so we

have proven the following result.

Theorem 3.3. For every integer k in the interval [ 6q2+3q−149
10 , 9q2−68q+519

10 ],
there exists a maximal partial ovoid Θ of Q(4, q), q ≥ 49 odd and q ≡ 1 mod 4,
such that |Θ| = k.

When q ≡ 3 mod 4, we use exactly the same arguments, with the difference
that the constraints for the parameters in this case are:

a) q+1
2 + 4 ≤ s ≤ q − 5,

b) if s ≤ 3q−1
4 − 4, then q+1

4 + 4 ≤ r ≤ s − q−3
4 − 1,

c) if 3q−1
4 − 3 ≤ s ≤ 3q−1

4 + 3, then q+1
4 + 4 ≤ r ≤ q−1

2 − 4,

d) if s ≥ 3q−1
4 + 4, then s − q−1

2 ≤ r ≤ q−1
2 − 4,

and this leads to the following same non–interrupted interval as for q ≡ 1 mod 4.

Theorem 3.4. For every integer k in the interval [ 6q2+3q−149
10 , 9q2−68q+519

10 ],
there exists a maximal partial ovoid Θ of Q(4, q), q ≥ 51 odd and q ≡ 3 mod 4,
such that |Θ| = k.

A spread S of a generalized quadrangle Γ is a set of lines of Γ such that every
point of Γ is contained in exactly one line of S; a partial spread S of Γ is a set of
lines of Γ such that every point of Γ is contained in at most one line of S. A partial
spread S of Γ is called maximal when it is not contained in a larger partial spread
of Γ. It is clear that in the dual generalized quadrangle, S corresponds to a partial
ovoid. So, since W(q), q odd, is dual to Q(4, q), q odd, it is clear that from the last
two theorems, we immediately have the following result.

Corollary 3.5. For every integer k in the interval [ 6q2+3q−149
10 , 9q2−68q+519

10 ],
there exists a maximal partial spread S of the generalized quadrangle W(q), q ≥ 49
odd, of size k.
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4. Concluding tables

As indicated in the abstract, this article concludes a series of three articles on
spectrum results.

The initial article focussed on a spectrum result on maximal partial ovoids of
Q(4, q), q even. Since Q(4, q) is dual to the generalized quadrangle W(q), the same
spectrum result for maximal partial spreads of W(q), q even, is obtained.

Similarly, since Q(4, q), q even, (and W(q), q even), is self-dual, the same
spectrum result on maximal partial spreads of Q(4, q), q even, and on maximal
partial ovoids of W(q), q even, is obtained.

Moreover, a maximal partial ovoid of W(q), q even, is a minimal blocking set
with respect to the planes of PG(3, q), q even [2], so also for these minimal blocking
sets and, as a equivalent result, for maximal partial 1–system of the Klein quadric
Q+(5, q), the same spectrum result is obtained.

In these results, the following cases are not yet discussed: a spectrum result
on minimal blocking sets with respect to the planes of PG(3, q), q odd, and the
equivalent spectrum results on maximal partial ovoids of Q(4, q), q odd, and on
maximal partial spreads of W(q), q odd.

The article [7] presented a spectrum result on minimal blocking sets with re-
spect to the planes of PG(3, q), q odd, and this article discusses the spectrum
results on maximal partial ovoids of Q(4, q), q odd, and on maximal partial spreads
of W(q), q odd.

Finally, a minimal blocking set B with respect to the planes of PG(3, q) defines
via the Klein correspondence a partial 1-system on the Klein quadric Q+(5, q) [6].

A 1-system M on Q+(5, q) is a set of q2 +1 lines `1, . . . , `q2+1 on Q+(5, q) such

that `⊥i ∩ `j = ∅, for all i, j ∈ {1, . . . , q2 + 1}, i 6= j. A partial 1-system M on
Q+(5, q) is a set of s ≤ q2 + 1 lines `1, . . . , `s on Q+(5, q) such that `⊥i ∩ `j = ∅, for
all i, j ∈ {1, . . . , s}, i 6= j. A partial 1-system on Q+(5, q) is called maximal when
it is not contained in a larger partial 1-system of Q+(5, q).

To summarize these series of spectrum results, we gather the spectrum results
in Tables 1, 2, and 3.

W(q), Q(4, q) Interval

q = 24h, h ≥ 2 q2+194q+10qb48 log(q+1)c−190
10 ≤ k ≤ 9q2−69q+440

10 [6]

q = 24h+1, h ≥ 2 q2+198q+10qb48 log(q+1)c−230
10 ≤ k ≤ 9q2−68q+430

10 [6]

q = 24h+2, h ≥ 1 q2+196q+10qb48 log(q+1)c−210
10 ≤ k ≤ 9q2−66q+410

10 [6]

q = 24h+3, h ≥ 1 q2+192q+10qb48 log(q+1)c−170
10 ≤ k ≤ 9q2−67q+420

10 [6]

Table 1: Spectrum on maximal partial ovoids and on maximal partial spreads in
Q(4, q), q even, and in W(q), q even, and on minimal blocking sets with respect to

the planes of PG(3, q), q even

PG(3, q) Interval
q ≡ 1 (mod 4) k ∈ [(q2 + 30q − 47)/4 + 18(q − 1) log(q), (3q2 − 18q + 71)/4] [7]
q ≡ 3 (mod 4) k ∈ [(q2 + 28q − 37)/4 + 18(q − 1) log(q), (3q2 − 12q + 57)/4] [7]

Table 2: Spectrum on minimal blocking sets with respect to the planes of
PG(3, q), q odd
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Interval

k ∈ [6q2+3q−149
10 , 9q2−68q+519

10 ]

Table 3: Spectrum on maximal partial ovoids of Q(4, q), q odd, and on maximal
partial spreads of W(q), q odd
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