127 research outputs found

    Gene expression deregulation by KRAS G12D and G12V in a BRAF V600E context

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>KRAS </it>and <it>BRAF </it>mutations appear of relevance in the genesis and progression of several solid tumor types but the co-occurrence and interaction of these mutations have not yet been fully elucidated. Using a microsatellite stable (MSS) colorectal cancer (CRC) cell line (Colo741) having mutated <it>BRAF </it>and <it>KRAS</it><sup><it>WT</it></sup>, we also aimed to investigate the <it>KRAS-BRAF </it>interaction. Gene expression profiles for control <it>KRAS</it><sup><it>WT</it></sup>, <it>KRAS</it><sup><it>G</it>12<it>V </it></sup>and <it>KRAS</it><sup><it>G</it>12<it>D </it></sup>transfected cells were obtained after cell clone selection and RT-PCR screening. Extensive qPCR was performed to confirm microarray data.</p> <p>Results</p> <p>We found that the <it>KRAS</it><sup><it>G</it>12<it>V </it></sup>state deregulated several genes associated to cell cycle, apoptosis and nitrogen metabolism. These findings indicated a reduced survival and proliferation with respect to the <it>KRAS</it><sup><it>WT </it></sup>state. The <it>KRAS</it><sup><it>G</it>12<it>D </it></sup>state was, instead, characterized by several other distinct functional changes as for example those related to chromatin organization and cell-cell adhesion without affecting apoptosis related genes.</p> <p>Conclusion</p> <p>These data predict that the G12D mutation may be more likely selected in a <it>BRAF </it>mutated context. At the same time, the presence of the <it>KRAS</it><sup><it>G</it>12<it>V </it></sup>mutation in the cells escaping apoptosis and inducing angiogenesis via IL8 may confer a more aggressive phenotype. The present results get along with the observations that CRCs with G12V are associated with a worse prognosis with respect to the WT and G12D states and may help identifying novel CRC pathways and biomarkers of clinical relevance.</p

    Unravelling similarities and differences in the role of circular and linear PVT1 in cancer and human disease

    Get PDF
    The plasmacytoma variant translocation 1 (PVT1) is a long non-coding RNA gene involved in human disease, mainly in cancer onset/ progression. Although widely analysed, its biological roles need to be further clarified. Notably, functional studies on PVT1 are complicated by the occurrence of multiple transcript variants, linear and circular, which generate technical issues in the experimental procedures used to evaluate its impact on human disease. Among the many PVT1 transcripts, the linear PVT1 (lncPVT1) and the circular hsa_circ_0001821 (circPVT1) are frequently reported to perform similar pathologic and pro-tumorigenic functions when overexpressed. The stimulation of cell proliferation, invasion and drug resistance, cell metabolism regulation, and apoptosis inhibition is controlled through multiple targets, including MYC, p21, STAT3, vimentin, cadherins, the PI3K/AKT, HK2, BCL2, and CASP3. However, some of this evidence may originate from an incorrect evaluation of these transcripts as two separate molecules, as they share the lncPVT1 exon-2 sequence. We here summarise lncPVT1/circPVT1 functions by mainly focusing on shared pathways, pointing out the potential bias that may exist when the biological role of each transcript is analysed. These considerations may improve the knowledge about lncPVT1/circPVT1 and their specific targets, which deserve further studies due to their diagnostic, prognostic, and therapeutic potential

    Genomic organization and evolution of double minutes/homogeneously staining regions with MYC amplification in human cancer

    Get PDF
    The mechanism for generating double minutes chromosomes (dmin) and homogeneously staining regions (hsr) in cancer is still poorly understood. Through an integrated approach combining next-generation sequencing, single nucleotide polymorphism array, fluorescent in situ hybridization and polymerase chain reaction-based techniques, we inferred the fine structure of MYC-containing dmin/hsr amplicons harboring sequences from several different chromosomes in seven tumor cell lines, and characterized an unprecedented number of hsr insertion sites. Local chromosome shattering involving a single-step catastrophic event (chromothripsis) was recently proposed to explain clustered chromosomal rearrangements and genomic amplifications in cancer. Our bioinformatics analyses based on the listed criteria to define chromothripsis led us to exclude it as the driving force underlying amplicon genesis in our samples. Instead, the finding of coexisting heterogeneous amplicons, differing in their complexity and chromosome content, in cell lines derived from the same tumor indicated the occurrence of a multi-step evolutionary process in the genesis of dmin/hsr. Our integrated approach allowed us to gather a complete view of the complex chromosome rearrangements occurring within MYC amplicons, suggesting that more than one model may be invoked to explain the origin of dmin/hsr in cancer. Finally, we identified PVT1 as a target of fusion events, confirming its role as breakpoint hotspot in MYC amplification

    Gene amplification as double minutes or homogeneously staining regions in solid tumors:Origin and structure

    Get PDF
    Double minutes (dmin) and homogeneously staining regions (hsr) are the cytogenetic hallmarks of genomic amplification in cancer. Different mechanisms have been proposed to explain their genesis. Recently, our group showed that the MYC-containing dmin in leukemia cases arise by excision and amplification (episome model). In the present paper we investigated 10 cell lines from solid tumors showing MYCN amplification as dmin or hsr. Particularly revealing results were provided by the two subclones of the neuroblastoma cell line STA-NB-10, one showing dmin-only and the second hsr-only amplification. Both subclones showed a deletion, at 2p24.3, whose extension matched the amplicon extension. Additionally, the amplicon structure of the dmin and hsr forms was identical. This strongly argues that the episome model, already demonstrated in leukemias, applies to solid tumors as well, and that dmin and hsr are two faces of the same coin. The organization of the duplicated segments varied from very simple (no apparent changes from the normal sequence) to very complex. MYCN was always overexpressed (significantly overexpressed in three cases). The fusion junctions, always mediated by nonhomologous end joining, occasionally juxtaposed truncated genes in the same transcriptional orientation. Fusion transcripts involving NBAS (also known as NAG), FAM49A, BC035112 (also known as NCRNA00276), and SMC6 genes were indeed detected, although their role in the context of the tumor is not clear

    MYC-containing double minutes in hematologic malignancies: evidence in favor of the episome model and exclusion of MYC as the target gene

    Get PDF
    Double minutes (dmin)—circular, extra-chromosomal amplifications of specific acentric DNA fragments—are relatively frequent in malignant disorders, particularly in solid tumors. In acute myeloid leukemia (AML) and myelodysplastic syndromes (MDS), dmin are observed in ∌1% of the cases. Most of them consist of an amplified segment from chromosome band 8q24, always including the MYC gene. Besides this information, little is known about their internal structure. We have characterized in detail the genomic organization of 32 AML and two MDS cases with MYC-containing dmin. The minimally amplified region was shown to be 4.26 Mb in size, harboring five known genes, with the proximal and the distal amplicon breakpoints clustering in two regions of ∌500 and 600 kb, respectively. Interestingly, in 23 (68%) of the studied cases, the amplified region was deleted in one of the chromosome 8 homologs at 8q24, suggesting excision of a DNA segment from the original chromosomal location according to the ‘episome model'. In one case, sequencing of both the dmin and del(8q) junctions was achieved and provided definitive evidence in favor of the episome model for the formation of dmin. Expression status of the TRIB1 and MYC genes, encompassed by the minimally amplified region, was assessed by northern blot analysis. The TRIB1 gene was found over-expressed in only a subset of the AML/MDS cases, whereas MYC, contrary to expectations, was always silent. The present study, therefore, strongly suggests that MYC is not the target gene of the 8q24 amplification

    circPVT1 and PVT1/AKT3 show a role in cell proliferation, apoptosis, and tumor subtype-definition in small cell lung cancer

    Get PDF
    Small cell lung cancer (SCLC) is treated as a homogeneous disease, although the expression of NEUROD1, ASCL1, POU2F3, and YAP1 identifies distinct molecular subtypes. The MYC oncogene, amplified in SCLC, was recently shown to act as a lineage-specific factor to associate subtypes with histological classes. Indeed, MYC-driven SCLCs show a distinct metabolic profile and drug sensitivity. To disentangle their molecular features, we focused on the co-amplified PVT1, frequently overexpressed and originating circular (circRNA) and chimeric RNAs. We analyzed hsa_circ_0001821 (circPVT1) and PVT1/AKT3 (chimPVT1) as examples of such transcripts, respectively, to unveil their tumorigenic contribution to SCLC. In detail, circPVT1 activated a pro-proliferative and anti-apoptotic program when over-expressed in lung cells, and knockdown of chimPVT1 induced a decrease in cell growth and an increase of apoptosis in SCLC in vitro. Moreover, the investigated PVT1 transcripts underlined a functional connection between MYC and YAP1/POU2F3, suggesting that they contribute to the transcriptional landscape associated with MYC amplification. In conclusion, we have uncovered a functional role of circular and chimeric PVT1 transcripts in SCLC; these entities may prove useful as novel biomarkers in MYC-amplified tumors.</p

    Pre–B cell receptor–mediated cell cycle arrest in Philadelphia chromosome–positive acute lymphoblastic leukemia requires IKAROS function

    Get PDF
    B cell lineage acute lymphoblastic leukemia (ALL) arises in virtually all cases from B cell precursors that are arrested at pre–B cell receptor–dependent stages. The Philadelphia chromosome–positive (Ph+) subtype of ALL accounts for 25–30% of cases of adult ALL, has the most unfavorable clinical outcome among all ALL subtypes and is defined by the oncogenic BCR-ABL1 kinase and deletions of the IKAROS gene in >80% of cases. Here, we demonstrate that the pre–B cell receptor functions as a tumor suppressor upstream of IKAROS through induction of cell cycle arrest in Ph+ ALL cells. Pre–B cell receptor–mediated cell cycle arrest in Ph+ ALL cells critically depends on IKAROS function, and is reversed by coexpression of the dominant-negative IKAROS splice variant IK6. IKAROS also promotes tumor suppression through cooperation with downstream molecules of the pre–B cell receptor signaling pathway, even if expression of the pre–B cell receptor itself is compromised. In this case, IKAROS redirects oncogenic BCR-ABL1 tyrosine kinase signaling from SRC kinase-activation to SLP65, which functions as a critical tumor suppressor downstream of the pre–B cell receptor. These findings provide a rationale for the surprisingly high frequency of IKAROS deletions in Ph+ ALL and identify IKAROS-mediated cell cycle exit as the endpoint of an emerging pathway of pre–B cell receptor–mediated tumor suppression
    • 

    corecore