1,186 research outputs found
The Light Curve and Internal Magnetic Field of the Mode-Switching Pulsar PSR B0943+10
A number of radio pulsars exhibit intriguing mode-switching behavior. Recent
observations of PSR B0943+10 revealed correlated radio and X-ray mode switches,
providing a new avenue for understanding this class of objects. The large X-ray
pulse fraction observed during the radio quiet phase (Q mode) was previously
interpreted as a result of changing obscuration of X-rays by dense
magnetosphere plasma. We show that the large X-ray pulse fraction can be
explained by including the beaming effect of a magnetic atmosphere, while
remaining consistent with the dipole field geometry constrained by radio
observations. We also explore a more extreme magnetic field configuration,
where a magnetic dipole displaced from the center of the star produces two
magnetic polar caps of different sizes and magnetic field strengths. These
models are currently consistent with data in radio and X-rays and can be tested
or constrained by future X-ray observations.Comment: 5 pages, 5 figures, submitted to ApJ
WP: 4.2 Effects of Ocean Acidification and Warming on the functioning of fish heart mitochondria
The use of oscillatory signals in the study of genetic networks
The structure of a genetic network is uncovered by studying its response to
external stimuli (input signals). We present a theory of propagation of an
input signal through a linear stochastic genetic network. It is found that
there are important advantages in using oscillatory signals over step or
impulse signals, and that the system may enter into a pure fluctuation
resonance for a specific input frequency.Comment: 46 pages, 5 figures. Submitted to PNAS on May 27th 2004. The paper is
under consideratio
Efficient generation of neural stem cell-like cells from adult human bone marrow stromal cells
Clonogenic neural stem cells (NSCs) are self-renewing cells that maintain the capacity to differentiate into brain-specific cell types, and may also replace or repair diseased brain tissue. NSCs can be directly isolated from fetal or adult nervous tissue, or derived from embryonic stem cells. Here, we describe the efficient conversion of human adult bone marrow stromal cells (hMSC) into a neural stem cell-like population (hmNSC, for human marrow-derived NSC-like cells). These cells grow in neurosphere-like structures, express high levels of early neuroectodermal markers, such as the proneural genes NeuroD1, Neurog2, MSl1 as well as otx1 and nestin, but lose the characteristics of mesodermal stromal cells. In the presence of selected growth factors, hmNSCs can be differentiated into the three main neural phenotypes: astroglia, oligodendroglia and neurons. Clonal analysis demonstrates that individual hmNSCs are multipotent and retain the capacity to generate both glia and neurons. Our cell culture system provides a powerful tool for investigating the molecular mechanisms of neural differentiation in adult human NSCs. hmNSCs may therefore ultimately help to treat acute and chronic neurodegenerative diseases
Tolerance of Hyas araneus zoea I larvae to elevated seawater PCO2 despite elevated metabolic costs
Early life stages of marine crustaceans respond sensitively to elevated seawater P CO 2 . However, the underlying physiological mechanisms have not been studied well. We therefore investigated the effects of elevated seawater P CO 2 on oxygen consumption, dry weight, elemental composition, median developmental time (MDT) and mortality in zoea I larvae of the spider crab Hyas araneus (Svalbard 79°N/11°E; collection, May 2009; hatch, December 2009). At the time of moulting, oxygen consumption rate had reached a steady state level under control conditions. In contrast, elevated seawater P CO 2 caused the metabolic rate to rise continuously leading to a maximum 1.5-fold increase beyond control level a few days before moulting into the second stage (zoea II), followed by a pronounced decrease. Dry weight of larvae reared under high CO 2 conditions was lower than in control larvae at the beginning of the moult cycle, yet this difference had disappeared at the time of moulting. MDT of zoea I varied between 45 ± 1 days under control conditions and 42 ± 2 days under the highest seawater CO 2 concentration. The present study indicates that larval development under elevated seawater P CO 2 levels results in higher metabolic costs during premoulting events in zoea I. However, H. araneus zoea I larvae seem to be able to compensate for higher metabolic costs as larval MDT and survival was not affected by elevated P CO 2 leve
On the Role of Global Warming on the Statistics of Record-Breaking Temperatures
We theoretically study long-term trends in the statistics of record-breaking
daily temperatures and validate these predictions using Monte Carlo simulations
and data from the city of Philadelphia, for which 126 years of daily
temperature data is available. Using extreme statistics, we derive the number
and the magnitude of record temperature events, based on the observed Gaussian
daily temperatures distribution in Philadelphia, as a function of the number of
elapsed years from the start of the data. We further consider the case of
global warming, where the mean temperature systematically increases with time.
We argue that the current warming rate is insufficient to measurably influence
the frequency of record temperature events over the time range of the
observations, a conclusion that is supported by numerical simulations and the
Philadelphia temperature data.Comment: 11 pages, 6 figures, 2-column revtex4 format. For submission to
Journal of Climate. Revised version has some new results and some errors
corrected. Reformatted for Journal of Climate. Second revision has an added
reference. In the third revision one sentence that explains the simulations
is reworded for clarity. New revision 10/3/06 has considerable additions and
new results. Revision on 11/8/06 contains a number of minor corrections and
is the version that will appear in Phys. Rev.
A Robot Model of OC-Spectrum Disorders : Design Framework, Implementation and First Experiments
© 2019 Massachusetts Institute of TechnologyComputational psychiatry is increasingly establishing itself as valuable discipline for understanding human mental disorders. However, robot models and their potential for investigating embodied and contextual aspects of mental health have been, to date, largely unexplored. In this paper, we present an initial robot model of obsessive-compulsive (OC) spectrum disorders based on an embodied motivation-based control architecture for decision making in autonomous robots. The OC family of conditions is chiefly characterized by obsessions (recurrent, invasive thoughts) and/or compulsions (an urge to carry out certain repetitive or ritualized behaviors). The design of our robot model follows and illustrates a general design framework that we have proposed to ground research in robot models of mental disorders, and to link it with existing methodologies in psychiatry, and notably in the design of animal models. To test and validate our model, we present and discuss initial experiments, results and quantitative and qualitative analysis regarding the compulsive and obsessive elements of OC-spectrum disorders. While this initial stage of development only models basic elements of such disorders, our results already shed light on aspects of the underlying theoretical model that are not obvious simply from consideration of the model.Peer reviewe
Interferon β-1a in relapsing multiple sclerosis: four-year extension of the European IFNβ-1a Dose-C omparison Study
Background: Multiple sclerosis (MS) is a chronic disease requiring long-term monitoring of treatment. Objective: To assess the four-year clinical efficacy of intramuscular (IM) IFNb-1a in patients with relapsing MS from the European IFNb-1a Dose-C omparison Study. Methods: Patients who completed 36 months of treatment (Part 1) of the European IFNb-1a Dose-C omparison Study were given the option to continue double-blind treatment with IFNb-1a 30 mcg or 60 mcg IM once weekly (Part 2). Analyses of 48-month data were performed on sustained disability progression, relapses, and neutralizing antibody (NA b) formation. Results: O f 608/802 subjects who completed 36 months of treatment, 493 subjects continued treatment and 446 completed 48 months of treatment and follow-up. IFNb-1a 30 mcg and 60 mcg IM once weekly were equally effective for up to 48 months. There were no significant differences between doses over 48 months on any of the clinical endpoints, including rate of disability progression, cumulative percentage of patients who progressed (48 and 43, respectively), and annual relapse rates; relapses tended to decrease over 48 months. The incidence of patients who were positive for NAbs at any time during the study was low in both treatment groups. Conclusion: C ompared with 60-mcg IM IFNb-1a once weekly, a dose of 30 mcg IM IFNb-1a once weekly maintains the same clinical efficacy over four years
- …
