19 research outputs found

    The influence of Young's modulus of loaded implants on bone remodeling: an experimental and numerical study in the goat knee.

    No full text
    Item does not contain fulltextThe aim of this study was to examine the influence of the Young's modulus of the implant material on the bone remodeling in a loaded condition. A combined animal experimental and computational study was set up. The animal experimental group comprised of 16 Saanen goats, each receiving one titanium implant (Young's modulus 110 GPa) and one high-density polyethylene (HDPE) implant (Young's modulus 1 GPa) in the left femoral condyle. Both types of implants received a titanium coating of 100 nm thickness. The implants protruded in the knee joint space and were directly weight bearing. The first group of eight goats was sacrificed after 6 weeks of loading and the second group of eight goats after 6 months of loading. The 16 femoral condyles with the 32 implants were prepared for microfocus computed tomography (micro-CT) scanning and histological sectioning. Three-dimensional trabecular bone parameters were calculated on the micro-CT images for the zones neck, middle, and apex of the implant. The percent of bone contact with the implant was measured on longitudinal histological sections. An axisymmetric finite element (FE) model was created to compare peri-implant bone strains and relative motion between a titanium and a HDPE implant for the experimental loading condition, and to assess the influence of different bone-implant interface (contact) conditions. From the statistical analysis of the 3D bone parameters, the difference between the titanium and HDPE implants was not significantly different (p > 0.05) between the zones (neck, middle, and apex) for both groups of goats. The implants could be considered in their entirety. After 6 weeks of loading, the PE implant presented lower connectivity and smaller marrow spaces in the circular region of 0-500 microm. In the region 500-1500 microm more bone volume was present for the PE implant. After 6 months, the PE implants showed more bone volume and thicker trabeculae than the titanium implants for the entire length of the implant. This effect was already present in the smallest region of interest, 0-500 microm. After 6 months more fibrous encapsulation was found around titanium implants. FE results demonstrated a substantial influence of the interface conditions on peri-implant strains and relative motion. For interface conditions that were representative for the early postoperative situation (involving press-fit and friction), differences in peri-implant bone strain distributions between titanium and HDPE could be related to the experimentally observed differences in amounts of bone and fibrous encapsulation. In contrast, differences in relative motion did not seem to play a role. Both the experimental and computational results suggest that implant stiffness can affect the peri-implant tissue response, which may be related to differences in peri-implant strains

    Validation of microfocus computed tomography in the evaluation of bone implant specimens.

    No full text
    Contains fulltext : 48247.pdf (publisher's version ) (Closed access)BACKGROUND: Microfocus computed tomography (muCT) is an emerging technique owing to its speed, full three-dimensional information, and nondestructive properties. PURPOSE: The aim of this study was to explore the efficacy of a muCT system (Philips HOMX 161, Philips Medical Systems GmbH, Hamburg, Germany) for visualization of the bone structure around screw-type titanium implants by comparing muCT images with their histologic homologues. MATERIALS AND METHODS: Eight screw-type titanium implants were placed in the femoral condyles of two goats. After the excised implant-bone specimens were embedded in resin, three-dimensional muCT of the excised implant and bone specimens was performed. Histologic sections were subsequently made. A total of 150 histologic sections were matched with muCT images. RESULTS: Bone trabeculae were clearly visible on the muCT scans. However, bone close to the implant or present in the apical surface features of the implant could not be detected. The overall matching between muCT scans (slices) and the histologic sections was 89%. CONCLUSION: Investigation of trabecular bone around titanium implants by muCT can be considered highly reliable for determining trabecular bone parameters, with the exception of measuring direct bone-to-implant contact

    Design and synthesis of substituted imidazole and triazole N-phenylbenzo[d]oxazolamine inhibitors of retinoic acid metabolizing enzyme CYP26

    No full text
    The design of N-phenylbenzo[d]oxazolamines as CYP26A1 inhibitors involved ligand docking experiments using molecular modeling (FlexX) and analysis of ligand interactions at the binding domain. The synthesis of the benzooxazol-2-yl-[phenyl-imidazol-1-yl-methyl)phenyl]amines was achieved by cyclisation of the corresponding isothiocyanates with subsequent introduction of the haem-binding heterocycle. Triazole and tetrazole derivatives were also prepared for comparison with the lead imidazole derivative. The benzooxazol-2-yl-[phenyl-imidazol-1-yl-methyl)phenyl]amines with small substituents in the phenyl ring were moderately potent CYP26A1 inhibitors (IC50 8 and 12 μM) and comparable with liarozole (IC50 7 μM)

    Evaluation of bone response to titanium-coated polymethyl methacrylate resin (PMMA) implants by X-ray tomography.

    Get PDF
    Contains fulltext : 51473.pdf (publisher's version ) (Closed access)High-resolution three-dimensional data about the bone response to oral implants can be obtained by using microfocus computer tomography. However, a disadvantage is that metallic implants cause streaking artifacts due to scattering of X-rays, which prevents an accurate evaluation of the interfacial bone-to-implant contact. It has been suggested that the use of thin titanium coatings deposited on polymeric implants can offer an alternative option for analyzing bone contact using micro-CT imaging. Consequently, the aim of the current study was to investigate bone behavior to titanium-coated polymethylmethacrylate (PMMA) implants by micro-CT and histological evaluation. For the experiment titanium-coated PMMA implants were used. The implants had a machined threaded appearance and were provided with a 400-500 nm thick titanium coating. The implants were inserted in the right or left tibia of 10 goats. After an implantation period of 12 weeks the implants were retrieved and prepared for micro-computer tomography (microCT), light microscopy, and X-ray microanalysis. The micro-CT showed that the screw-threads and typical implant configuration were well maintained through the installation procedure. Overall, histological responses showed that the titanium-coated implants were well tolerated and caused no atypical tissue response. In addition, the bone was seen in direct contact with the titanium-coated layer. The X-ray microanalysis results confirmed the light microscopical data. In conclusion, the obtained results proof the final use of titanium-coated PMMA implants for evaluation of the bone-implant response using microCT. However, this study also confirms that for a proper analysis of the bone-implant interface the additional use of microscopical techniques is still required
    corecore