25 research outputs found

    Incorporating climate change effects into the European power system adequacy assessment using a post-processing method

    Full text link
    The demand-supply balance of electricity systems is fundamentally linked to climate conditions. In light of this, the present study aims to model the effect of climate change on the European electricity system, specifically on its long-term reliability. A resource adequate power system -- a system where electricity supply covers demand -- is sensitive to generation capacity, demand patterns, and the network structure and capacity. Climate change is foreseen to affect each of these components. In this analysis, we focused on two drivers of power system adequacy: the impact of temperature variations on electricity demand, and of water inflows changes on hydro generation. Using a post-processing approach, based on results found in the literature, the inputs of a large-scale electricity market model covering the European region were modified. The results show that climate change may decrease total LOLE (Loss of Load Expectation) hours in Europe by more than 50%, as demand will largely decrease because of a higher temperatures during winter. We found that the climate change impact on demand tends to decrease LOLE values, while the climate change effects on hydrological conditions tend to increase LOLE values. The study is built on a limited amount of open-source data and can flexibly incorporate various sets of assumptions. Outcomes also show the current difficulties to reliably model the effects of climate change on power system adequacy. Overall, our presented method displays the relevance of climate change effects in electricity network studies

    Data Driven Understanding of Energy-Meteorological Variability and its Impact on Energy System Operations

    Get PDF
    Earth’s climate is changing. For a habitable planet in the future the emission of greenhouse gasses needs to be stopped. As future societies still require energy for their basic needs, a transition away from fossil fuel to renewable energy sources is needed. Nothing is as variable as the weather, and weather is the driving force of renewable energy resources. The interaction of societal and weather driven variability, here coined the energy-meteorological variability, is still largely unchartered. This variability is the central theme of this thesis. The different backgrounds and expertise of those working at the intersection of the energy and climate domain mean that the current methods to assess this variability in energy system operations are inadequate. A data driven approach is needed to incorporate the energy-meteorological variability within assessments of (future) energy systems. In this thesis we investigate data driven methods and metrics to quantify and identify a deviation of the expected patterns. We need to overcome the disconnect between energy and climate scientists in order to integrate an understanding of variability in energy system operations. The applicability of approaches in operational energy system assessments is key. Intensive and sustainable collaborations between the different disciplines is needed to facilitate the energy transition, between the different domains of science as well as between science and industry

    Detection of Critical Events in Renewable Energy Production Time Series

    Full text link
    The introduction of more renewable energy sources into the energy system increases the variability and weather dependence of electricity generation. Power system simulations are used to assess the adequacy and reliability of the electricity grid over decades, but often become computational intractable for such long simulation periods with high technical detail. To alleviate this computational burden, we investigate the use of outlier detection algorithms to find periods of extreme renewable energy generation which enables detailed modelling of the performance of power systems under these circumstances. Specifically, we apply the Maximum Divergent Intervals (MDI) algorithm to power generation time series that have been derived from ERA5 historical climate reanalysis covering the period from 1950 through 2019. By applying the MDI algorithm on these time series, we identified intervals of extreme low and high energy production. To determine the outlierness of an interval different divergence measures can be used. Where the cross-entropy measure results in shorter and strongly peaking outliers, the unbiased Kullback-Leibler divergence tends to detect longer and more persistent intervals. These intervals are regarded as potential risks for the electricity grid by domain experts, showcasing the capability of the MDI algorithm to detect critical events in these time series. For the historical period analysed, we found no trend in outlier intensity, or shift and lengthening of the outliers that could be attributed to climate change. By applying MDI on climate model output, power system modellers can investigate the adequacy and possible changes of risk for the current and future electricity grid under a wider range of scenarios

    Linking Unserved Energy to Weather Regimes

    Get PDF
    The integration of renewable energy sources into power systems is expected to increase significantly in the coming decades. This can result in critical situations related to the strong variability in space and time of weather patterns. During these critical situations the power system experiences a structural shortage of energy across multiple time steps and regions, leading to Energy Not Served (ENS) events. Our research explores the relationship between six weather regimes that describe the large scale atmospheric flow and ENS events in Europe by simulating future power systems. Our results indicate that most regions have a specific weather regime that leads to the highest number of ENS events. However, ENS events can still occur during any weather regime, but with a lower probability. In particular, our findings show that ENS events in western and central European countries often coincide with either the positive Scandinavian Blocking (SB+), characterised by cold air penetrating Europe under calm weather conditions from north-eastern regions, or North Atlantic Oscillation (NAO+) weather regime, characterised by westerly flow and cold air in the southern half of Europe. Additionally, we found that the relative impact of one of these regimes reaches a peak 10 days before ENS events in these countries. In Scandinavian and Baltic countries, on the other hand, our results indicate that the relative prevalence of the negative Atlantic Ridge (AR-) weather regime is higher during and leading up to the ENS event.Comment: Rogier H. Wuijts and Laurens P. Stoop contributed equally to this wor

    Towards a future-proof climate database for European energy system studies

    Get PDF
    In 2013, the European Network of Transmission System Operators (TSOs) for electricity (ENTSO-E) created the Pan-European Climate Database (PECD), a tool that has underpinned most studies conducted by TSOs ever since. So far, the different versions of the PECD have used so-called modern-era ‘reanalysis’ products that represent a gridded amalgamation of historical conditions from observations. However, scientific evidence suggests, and recent European regulation requires, that power system adequacy studies should take climate change into account when estimating the future potential of variable renewable resources, such as wind, solar and hydro, and the impact of temperature on electricity demand. This paper explains the need for future climate data in energy systems studies and provides high-level recommendations for building a future-proof reference climate dataset for TSOs, not just in Europe, but also globally

    The Climatological Renewable Energy Deviation Index

    Get PDF
    Here we propose an index to quantify and analyse the impact of climatological variability on the energy system at different timescales. We define the Climatological Renewable Energy Deviation Index (CREDI) as the cumulative anomaly of a renewable resource with respect to its climate over a specific time period of interest. We analyse the index at decadal, annual and (sub-)seasonal timescales using the forthcoming Pan-European Climate Database and consider the starting point and window of analysis for its use at those timescales. The CREDI is meant as an analytical tool for researchers and stakeholders to help them quantify, understand, and explain, the impact of the variability of weather on the energy system across timescales. Improved understanding translates to better assessments of how renewable resources, and the associated risks for energy security, may fare in current and future climatological settings. The practical use of the index is in resource planning. For example transmission system operators may be able to adjust short-term planning to reduce adequacy issues before they occur or combine the index with storyline event selection for improved assessments of climate change related risks

    The climatological renewable energy deviation index (CREDI)

    Get PDF
    We propose an index to quantify and analyse the impact of climatological variability on the energy system at different timescales. We define the climatological renewable energy deviation index (CREDI) as the cumulative anomaly of a renewable resource with respect to its climate over a specific time period of interest. For this we introduce the smooth, yet physical, hourly rolling window climatology that captures the expected hourly to yearly behaviour of renewable resources. We analyse the presented index at decadal, annual and (sub-)seasonal timescales for a sample region and discuss scientific and practical implications. CREDI is meant as an analytical tool for researchers and stakeholders to help them quantify, understand, and explain, the impact of energymeteorological variability on future energy system. Improved understanding translates to better assessments of how renewable resources, and the associated risks for energy security, may fare in current and future climatological settings. The practical use of the index is in resource planning. For example transmission system operators may be able to adjust short-Term planning to reduce adequacy issues before they occur or combine the index with storyline event selection for improved assessments of climate change related risks
    corecore