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Abstract

Energy system models underpin decisions by energy system planners and
operators. Energy system modelling faces a transformation: accounting
for changing meteorological conditions imposed by climate change. To
enable that transformation, a community of practice in energy-climate
modelling has started to form that aims to better integrate energy sys-
tem models with weather and climate models. Here, we evaluate the
disconnects between the energy system and climate modelling com-
munities, then lay out a research agenda to bridge those disconnects.
In the near-term, we propose interdisciplinary activities for expedit-
ing uptake of future climate data in energy system modelling. In the
long-term, we propose a transdisciplinary approach to enable devel-
opment of (1) energy-system-tailored climate datasets for historical
and future meteorological conditions and (2) energy system models
that can effectively leverage those datasets. This agenda increases the
odds of meeting ambitious climate mitigation goals by systematically
capturing and mitigating climate risk in energy sector decision making.

1 Introduction

Transforming and decarbonising energy systems is necessary to meet ambitious
climate change mitigation goals. This monumental task falls on energy system
planners and operators around the world, who share the same primary goal:
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to provide reliable, resilient, affordable, and clean energy to consumers. Sys-
tem transformation will increasingly couple electric power with other energy
sectors [1]. Within individual sectors, system transformation will increasingly
couple energy supply and demand with weather and climate. Integrated assess-
ment models provide high-level guidance on the decarbonization needed, but
poorly capture meteorological variability [2]. Higher resolution energy models
are the key to capturing this variability within a strongly coupled system [3].
The resulting complexity of a strongly coupled system requires increasingly
ambitious modelling efforts.

To guide their decisions, energy system planners and operators use energy
system models of varying types. As wind and solar power have grown, energy
system modelling has undergone a transformation to handle short- and/or
long-term meteorological variability and uncertainty [4–6]. This transformation
has increased our understanding of how current and future energy systems
can be reliable and affordable while relying on variable and uncertain power
generation from renewables. Further progress in this area holds one of the keys
to successful climate change mitigation [1].

Despite the recent successes in representing the impact of present-day
weather and climate, the energy system modelling community faces another
transformation: accounting for the non-stationary meteorological conditions
imposed by anthropogenic climate change [7–9] and long-term climate vari-
ability [10, 11]. An emerging body of literature is highlighting diverse threats
that future weather might pose to reliable, resilient, affordable, and clean
energy provision. Shifting meteorological and hydrological conditions can affect
energy supply, e.g. from renewable [3, 8, 12–25] and thermal power genera-
tion [26–28], and energy demand [20, 24, 26, 29–32]. Many of these studies
report climate change impacts on the order of ± 5-10% in long-term aver-
ages depending on the studied region, period, and part of the power system
analysed [13, 15, 17, 18, 22, 24, 30–32]. Studies also report more pronounced
impacts over shorter periods or smaller areas [13, 18, 22, 24, 32]. Although
uncertainty surrounds climate change impacts on energy systems, ignoring
climate change can be dangerous with respect to extremes and might lead
to reduced system reliability [12, 33–35] and resiliency. The potential con-
sequences of these threats are underscored by recent real-world events, like
reliability failures during rolling blackouts in California and Texas in 2020 [36]
and 2021 [37], respectively, and resiliency failures during wildfires in the West-
ern United States, Australia, and elsewhere [38, 39]. While peer-reviewed
climate change attribution studies [40, 41] have not been completed for these
events, extreme weather driving these events (e.g., heat and drought) is pro-
jected to increase in severity and/or frequency under climate change in many
parts of the world [42–45].

In recognition of these threats, a community of practice in energy-climate
modelling has started to form that aims to better coordinate two types of
models: (1) energy system models and (2) weather and climate models. The
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community has formed around annual workshops [25, 46, 47]; monthly webi-
nars [48]; overlapping research teams; and a virtual knowledge sharing platform
enabling ongoing exchange about new research, code and data1. To expe-
dite the development of this community, this perspective details the gaps
between energy system and climate modellers, then suggests near- and long-
term actions aimed at closing them. Our suggestions aim to bring the energy
and climate modelling communities together to effectively and appropriately
use climate information in guiding energy system design and operation.

2 The Disconnect between Energy System and
Climate Modelling Communities

To highlight the gap between energy system and climate modelling commu-
nities, this section first describes the work of an illustrative member of each
community. The description of the illustrative member is not meant to describe
all members of each community, but is instead intended to provide a simplified
representation of a typical member’s scope and priorities.

An illustrative energy system modeller uses one or more types of energy
system models [4, 6] to better understand or advance the provision of reli-
able, affordable, and clean energy. Their energy system model is formulated to
inform a particular decision, e.g. as an optimisation model to inform invest-
ment [49–51] or operational decisions [51] under various objectives or as a
simulation model to investigate system behaviour under certain boundary con-
ditions [52]. Given the scale and complexity of real-world energy systems, their
model sacrifices model formulation and spatio-temporal resolution to main-
tain computational tractability [53–55]. Oftentimes, this means formulating
a deterministic problem and simplifying meteorological data across space or
time, e.g. by ignoring climate-related uncertainty, modelling a few days per
year, assuming perfect foresight, or aggregating sites or time periods [56, 57].
As deterministic models, many energy system models return the optimal plan-
ning decision or operational strategy for a given set of meteorological and other
inputs.

In selecting meteorological data, our representative energy system mod-
eller looks for five key attributes in a dataset: (1) the relevant spatio-temporal
resolution for the studied decision; (2) synchronous with other climate-sensi-
tive inputs, e.g. renewable production synchronous with electricity demand;
(3) convenient to process; (4) computationally manageable; and (5) a high-
-quality representation of meteorological phenomena relevant to energy system
and technology performance (see also Figure 1). To satisfy these attributes,
the status quo for meteorological data in energy system models is historical
data, e.g. from reanalyses [58–63] or reanalysis-derived products (e.g. Renew-
able.ninja [64, 65], EMHIRES [66, 67], WIND Toolkit [68], NSRDB [69] and
the PECD [70, 71]). Historical meteorological datasets provide hourly (or even

1The platform is hosted on Slack, see https://join.slack.com/t/nextgenec/shared invite/
zt-13ylctgw5-OG7aWUAPQuC7dlRZkUszvA.

https://join.slack.com/t/nextgenec/shared_invite/zt-13ylctgw5-OG7aWUAPQuC7dlRZkUszvA
https://join.slack.com/t/nextgenec/shared_invite/zt-13ylctgw5-OG7aWUAPQuC7dlRZkUszvA
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sub-hourly) data, which is the typical temporal resolution at which energy
system models run when applied to planning and operational decisions [72].
Spatial resolutions in these datasets differ widely, but are generally on the order
of 10 kms. With respect to synchronicity, many historical datasets include
wind and solar resource data, which can be paired with historical electricity
demand and hydropower time series. To process historical datasets, energy
system modellers leverage widely-used, open-source code and/or tools (e.g.,
ECEM [73], Atlas [74], atlite [75], and SAM [76]) that convert meteorological
data, e.g. wind speeds, into energy system model inputs, e.g. wind power out-
put. To maintain computational manageability, they use sub-decadal — often
even a single year — of data. Finally, to understand the quality of the dataset,
our illustrative energy system modeller might review papers validating and
bias-correcting relevant variables from datasets against empirical data [77–81].
They are, however, unlikely to extensively investigate the quality of the mete-
orological data for their specific purposes, nor to be fully aware of the in-depth
meteorological literature assessing the representation of relevant meteorologi-
cal processes and their vulnerability to climate change (e.g., [82] for a European
perspective and [83], [84] and [77] for their connection to energy).

This selection process is much more daunting for meteorological datasets
sourced from climate models seeking to represent the future (rather than
historical) climate. To understand why, we first turn our attention to under-
standing the scope and priorities of an illustrative climate modeller.

Our illustrative climate modeller is primarily concerned with understand-
ing and simulating long-term weather and climate change. They use general
circulation models (GCMs), which employ a physics-based dynamical math-
ematical model of the circulation on Earth, to derive long-term climate and
weather projections. They might further refine the accuracy and/or resolu-
tion of their weather projections by bias correcting and/or downscaling, which
use statistical [85] or dynamical [86] models to capture the effect of geogra-
phy or other factors on weather that GCMs are too coarse to account for. To
them, an energy system modeller is often seen as a downstream user of cli-
mate data: the climate modeller’s primary focus is to generate high-quality
meteorological data, and to provide access to the raw meteorological output
for downstream users. As a result, our climate modeller has little knowledge
about data needs specific to the energy sector and does not necessarily assess
the climate model’s skill in the context of energy system applications. Instead,
in generating and publishing data, our climate modeller has several objectives.
First, while being interested in how their model performs relative to obser-
vations and other models (e.g., [87] and [88]), they likely care more about
the model’s performance in purely meteorological-process terms than about
energy-relevant surface climate variables (e.g., they may focus on wind-speed
at 10 m — as at this level there are surface observations to validate models
against — rather than estimating wind-power capacity factors at turbine hub-
height). Second, though some surface climate variables (or “Essential Climate
Variables”) are extensively evaluated in climate models, that evaluation tends
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to focus on static statistical properties (e.g., mean, variance, and probabil-
ity distributions) of meteorological variables in isolation rather than on time
series of and co-variability between energy-system-relevant variables (e.g., in
a kalte dunkelflaute [89, 90]). Third, given the complex sources of uncertainty
affecting climate models (e.g., scenario uncertainty, internal variability, and
model error; [91]), our illustrative climate modeller typically views ensembles
of many climate models as essential for understanding climate risk in present
and future climate. Each simulation produced by them will therefore cover
many decades including historical and future conditions. Ultimately, these
datasets allow separation of fluctuations induced by climate change from nat-
ural climate fluctuations. Thus, overall our illustrative climate modeller might
typically seek to draw conclusions from tens of model simulations (from one
or more models), each of which will span 30 years or more for a historical and
future climate (e.g., [92]).

The expertise, scope, and priorities of our illustrative climate modeller sig-
nificantly differ from those of our illustrative energy system modeller, leading
to a disconnect in information and data flows between the two. As a result,
when considering using outputs from our climate modeller, our energy system
modeller faces a steep challenge in satisfying their five meteorological data pri-
orities (see Figure 1). This steep challenge could — and likely often does —
deter our energy system modeller from engaging with state-of-the-art climate
datasets, thus leading to an over-reliance on historical meteorology despite its
increasingly poor representation of the future.

With respect to resolution, our illustrative energy system modeller wants
hourly data fields at high spatial resolution. Such high-resolution data is
rarely if ever available, including in the ongoing CMIP6 High Resolution
Model Intercomparison Project [93], which currently provides typically no
more than 3-hourly data [92]. Our illustrative energy system modeller also
lacks the knowledge, expertise, and/or resources to consider, select, and run
appropriate downscaling and bias adjustment methods. Finding synchronous
datasets is generally easier than finding datasets with appropriate resolution,
as many climate datasets include all types of meteorological variables of inter-
est for energy systems. However, available meteorological variables in climate
datasets are often deficient, as discussed below. Additionally, projecting elec-
tricity demand and hydropower generation with bottom-up models and climate
model outputs is an area of active research. Diverse methods and assumptions
exist to model electricity demand, e.g. as a function of surface air tempera-
ture, electrification, and societal trends, indicating substantial methodological
uncertainty [94]. Providing accurate projections of hydropower generation
potential given future meteorology requires complex hydrological modelling,
but simpler approaches exist. Whether these simpler approaches are general-
izable or remain valid in a changing climate is, however, often unclear. For
instance, profiles of hydropower generation potentials have been inferred using
runoff in upstream basins [95, 96], since generation potentials have been found
to be highly correlated with reservoir inflow [97]. Finding convenient to process
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Illustrative Energy System Modeller Illustrative Climate Modeller

Capture effect of meteorology on planning, 
operations, and reliability

Understand and project long-term weather dynamics

Convenient to process data

Computationally tractable data

Capture interactions between 
energy system parts

Accurately quantify 
meteorology-dependent 
energy system parts

Use data at decision - and 
outcome- relevant resolution

Wants a single annual 
timeseries

Wants synchronous variables 
that capture co-variability

Wants high-quality 
representations of relevant 
meteorological phenomena

Wants hourly data at high 
spatial resolution

Scenario uncertainty, internal 
variability, and model error 

Model complete climate 
system

Validate models on leading 
modes of climate variability

Model global, 
highly interconnected, 

non-linear climate system

Produces multi-decadal 
ensembles of climate data

Produces synchronous 
variables, but no focus on 

energy relevant fields

Lacks detailed validation of 
(co-) variability in energy 

relevant variable

Produces 3- to 24-hourly data 
at coarse spatial resolution

Fig. 1 Our illustrative energy system and climate modellers have different key priorities,
leading to a disconnect (red arrows) between our illustrative energy system modeller needs
and climate modeller outputs.

and computationally manageable datasets poses another significant challenge
for the energy system modeller, to whom the concept of and processing tools
for a meteorological ensemble are largely foreign. Standard climate change
datasets of long-term ensembles radically differ from the single annual mete-
orological time series that our illustrative energy system modeller is trained
to use. Finally, to understand whether a climate data set represents relevant
meteorological phenomena well, an energy system modeller has two choices:
(1) parse through literature, including documentation and journal articles, to
understand the model’s skill with respect to each meteorological variable of
interest and their co-variability, or (2) assess them themself. The first choice
is often not possible, as such information is typically unavailable and, where
available, not quantified based on energy system model needs. But more impor-
tantly, our energy system modeller does not have the training or expertise to
effectively carry forward either choice. Without familiarity with fundamental
concepts in climate science, large parts of the existing literature are effectively
useless.

Overall, these perspectives of an illustrative energy and climate modeller
highlight several disconnects between energy and climate modelling that cur-
rently hinder effective usage of climate information in energy system modelling
(see Figure 1). While some of these disconnects relate to data integration chal-
lenges (e.g., mismatches in spatio-temporal resolution), others relate to deeper
challenges regarding the scope, objectives, expertise, and treatment of mete-
orological uncertainty embedded within each community. In the next section,
we offer near- and long-term actions that can help bridge these disconnects.

3 Bridging the Divide through a New
Approach to Data and Research

The problems identified above currently prevent the use of the full potential of
climate expertise and information in energy system modelling. To address these
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problems, we propose a set of near- and long-term interdisciplinary and trans-
disciplinary activities among the energy and climate modelling communities.
In the near-term, our proposed interdisciplinary activities aim to expedite the
use of future climate data in energy system modelling, generating much-needed
insights for decision-makers. In the long term, our proposed transdisciplinary
activities aim to enable two developments: (i) energy-system-tailored climate
datasets for historical and future meteorological conditions, and (ii) energy
system models that can effectively leverage those datasets. Proposed actions
will require reframing and reconsidering methods and processes currently used
to create and share data and knowledge between climate and energy modelling
communities.

3.1 Align Climate Model Outputs with Energy System
Model Needs

First, the climate modelling community should align the resolution of their out-
puts with energy system model needs. In future phases of coordinated climate
simulations, climate modellers should output and save the following variables
at hourly resolution to match the granularity of detailed energy system mod-
els: surface radiation (direct and diffuse); wind speeds and air density at
multiple levels between 80 and 200m, including 100 m for intercomparison stud-
ies; surface air temperature; surface relative humidity; precipitation; runoff;
and evaporation. With these variables, energy system modellers can esti-
mate energy demand and potential electricity generation from wind, solar and
hydropower with much greater fidelity (notwithstanding challenges associated
with demand and hydropower projections discussed above). We acknowledge
that for many current-generation global climate models, the benefits of pro-
ducing hourly model output may be modest (compared to 3-hourly) but it
is likely to increase in future models with higher resolution (as may already
be the case for current regional climate models). More importantly, access to
hourly surface weather variables from climate models would greatly simplify
the pathway to uptake of climate model data by energy-system specialists by
(i) improving comparability with historical reanalysis data like ERA5; (ii) eas-
ing integration with highly non-linear energy models (e.g., wind power has a
cubic dependence on wind speed); and (iii) directly matching the time-gran-
ularity of energy system models used in operations and planning. Experience
from previous projects, particularly the EU H2020 PRIMAVERA project,
suggests that the additional storage costs of producing a small set of single
level surface weather data are modest compared to, e.g., archival of 3-D cloud
physics datasets CFMIP or ISCCP [98] or Lagrangian storm track diagnos-
tics [99]. Moreover, a greater availability of high frequency surface variables
would benefit climate impact analyses in energy system modelling and other
communities. Adopting hourly surface weather data output in the ‘standard’
CMIP7 protocol would enable uptake in typical energy models and simplify
comparison of system outcomes with historical versus future datasets, poten-
tially enabling standardised energy risk assessments from CMIP7 onwards. As
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energy systems evolve, the suggested list of variables should be adopted, for
instance, to reflect future changes in turbine hub height.

3.2 Add Climate-Related Uncertainty Analysis to
Default Energy System Modelling Toolbox

Second, the energy system modelling community should add climate-related
uncertainty quantification to their default toolbox. This requires accepting
that there is not ‘one’ representative meteorological time series they can use.
The use of a single year of meteorological data, whether historical or future, is
invalidated by the pronounced inter-annual variability in surface climate [100–
102]. Moreover, satellite-era reanalyses and other historical products are too
short to capture multidecadal climate variability [11, 103]. Single time series
of one or more years carry the risk of missing low probability extreme events.
The problem is substantially exacerbated in climate change assessment because
multiple potential climate realisations from single- or multi-model ensembles
must be considered, along with the role of model error. Diverse sources of
uncertainty accumulate in these potential future climates, and the lack of
future observation makes validation infeasible by definition.

Several potential strategies exist to include climate-related uncertainty
in energy system models. Sensitivity analysis [34, 104], advanced sampling
procedures [53–55], and robust decision-making [105–107] can capture climate-
related uncertainty without modifying energy system model formulations.
Advanced sampling aims to minimise the number of energy system model runs
by reducing the ensemble size while still capturing its variability. Conversely,
sensitivity analysis and robust decision-making would run energy system mod-
els for individual ensemble members to identify trade-offs between objectives,
e.g. between cost and reliability. Other strategies like stochastic and robust
optimization [35, 108, 109] would embed climate uncertainty within the energy
system model through major formulation changes. But these strategies face
computational and parameterization challenges, constraining their applica-
bility to real-world systems. With these enhanced uncertainty quantification
strategies, the energy system community could begin to use ensembles of cli-
mate data [110], so the energy system community should prioritise addressing
remaining conceptual and computational challenges. Distributed modelling
teams that incorporate experts in uncertainty quantification and climate sci-
ence could partially alleviate the challenges with implementation of these
uncertainty quantification strategies [111].

3.3 Strengthen Transdisciplinary Collaborations between
Energy System and Climate Modelling Communities

Third, the energy system and climate modelling communities must engage
more strongly in transdisciplinary collaboration (see Figure 2). Using the full
potential of climate information to guide climate change mitigation and adap-
tation will require coordination between the energy and climate modelling
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communities, taking into account uncertainties, limitations, and contexts. We
acknowledge that climate services contribute to this coordination by seeking to
provide useful climate information and context knowledge to impact modellers
and policy makers through websites, interactive group activities and focused
relationships (e.g., [112, 113]). Although these services aim to overcome the
disconnect between users and providers of climate information, substantial
issues persist. For instance, experts report that climate services mainly focus
on delivering better data rather than advancing the needed research identified
in this perspective [114]. In short, there is a need for the two communities to
work together rather than merely seeking an efficient interface across which
pre-packaged information is passed.

Sequential approaches that divide labour by expertise are problematic
because they assume that the climate and energy steps can be separated.
For example, when investigating the impacts of extreme events on an energy
system, a climate modeller could try to identify the most and least extreme
ensemble members which are subsequently used by the energy expert in their
modelling. This approach, however, only works if the climate modeller’s exper-
tise is sufficient to predict what the energy model will consider extreme [110].
This is unlikely given the complexity of energy models with hundreds of
millions of decision variables and interactions between technologies and sectors.

Instead of a sequential approach, we propose an iterative transdisciplinary
framework (see Figure 2). In this framework, climate modellers would generate
climate ensembles. Climate and energy modellers would then jointly evalu-
ate those ensemble members to identify which ensembles, variables, locations,
and meteorological phenomena yield extreme energy system outcomes (e.g.,
non-served or peak residual demand; [89]). This identification would occur by
running each ensemble member through energy system models [110]. Identi-
fied variables and phenomena that yield extreme power system outcomes, as
opposed to just extreme meteorological conditions, would be fed back to the
climate modelling community to enable better skill assessment and targeted
model development for energy system applications. Identified variables and
phenomena would also guide downscaling activities to produce energy system
inputs, which would be fed back into energy system model development.

Research funders can aid this transdisciplinary collaboration if the limita-
tions of traditional paradigms are reflected in their priorities and objectives.
Emphasis on enhanced interdisciplinary training and exchange, alongside
career support for early- and mid-career researchers, would support those
whose research already spans this interdisciplinary space. Moreover, funding
agencies should push transdisciplinary research in energy and climate sci-
ence, particularly where such research challenges the prevailing paradigms.
To appropriately assess transdisciplinary proposals, funders should actively
mitigate the risk that reviewers approach transdisciplinary work from the
perspective of a single discipline by implementing policies that embed trans-
disciplinary diversity and awareness into the entire review process. Funding
opportunities in this area should support fundamental scientific challenges
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of translating climate risk into energy systems (e.g., maintaining compu-
tational tractability and understanding the roles of, as well as mitigating
against, different sources of uncertainty) alongside larger-scale ‘applied’ or
‘solutions-oriented’ programmes
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Fig. 2 Current sequential approach and the proposed transdisciplinary framework for
improving coordination between energy system and climate modelling communities.

4 Conclusion

The energy system modelling community faces a transformation: account-
ing for the non-stationary meteorological conditions associated with climate
change. Succeeding in this transformation is crucial for future energy systems
to provide reliable, affordable, and clean energy under an uncertain future cli-
mate. Yet, this transformation is held back by a disconnect between energy
and climate modelling communities.

To bridge this disconnect and to overcome the challenges associated with
modelling energy systems under climate change, this article explored the
underlying drivers, then proposed three inter- and transdisciplinary actions:
(1) the climate modelling community should align output variables and their
spatio-temporal resolutions with energy system modelling needs; (2) the energy
system modelling community should add climate-related uncertainty quantifi-
cation to their default analytical toolbox; and (3) both communities should
engage in a transdisciplinary approach that ensures the development and eval-
uation of climate information in line with energy sector needs. Ultimately,
these actions point to the fact that effective energy system modelling in a
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changing climate should not continue to treat climate and energy modelling
sequentially. Rather, effective energy system modelling must understand cli-
mate and energy modelling as a transdisciplinary interactive endeavour. Given
intensifying climate change and rapid decarbonization of energy systems, the
time for this endeavour is now.
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[28] Miara, A., Macknick, J.E., Vörösmarty, C.J., Tidwell, V.C., Newmark,
R., Fekete, B.: Climate and water resource change impacts and adap-
tation potential for us power supply. Nature Climate Change (2017).
https://doi.org/10.1038/nclimate3417

[29] Auffhammer, M., Baylis, P., Hausman, C.H.: Climate change is projected
to have severe impacts on the frequency and intensity of peak electricity
demand across the united states. Proceedings of the National Academy
of Sciences (2017). https://doi.org/10.1073/pnas.1613193114

[30] Fonseca, F.R., Jaramillo, P., Bergés, M., Severnini, E.: Seasonal effects
of climate change on intra-day electricity demand patterns. Climatic
Change (2019). https://doi.org/10.1007/s10584-019-02413-w

[31] De Cian, E., Wing, I.S.: Global energy consumption in a warming cli-
mate. Environmental and resource economics (2019). https://doi.org/
10.1007/s10640-017-0198-4

[32] Deroubaix, A., Labuhn, I., Camredon, M., Gaubert, B., Monerie, P.-A.,
Popp, M., Ramarohetra, J., Ruprich-Robert, Y., Silvers, L.G., Siour, G.:
Large uncertainties in trends of energy demand for heating and cooling
under climate change. Nature communications (2021). https://doi.org/
10.1038/s41467-021-25504-8

[33] Harang, I., Heymann, F., Stoop, L.P.: Incorporating climate change
effects into the european power system adequacy assessment using a
post-processing method. Sustainable Energy, Grids and Networks (2020).
https://doi.org/10.1016/j.segan.2020.100403

[34] Ralston Fonseca, F., Craig, M., Jaramillo, P., Bergés, M., Severnini, E.,
Loew, A., Zhai, H., Cheng, Y., Nijssen, B., Voisin, N., et al.: Climate-
induced tradeoffs in planning and operating costs of a regional electricity
system. Environmental Science & Technology (2021). https://doi.org/
10.1021/acs.est.1c01334

[35] Bennett, J.A., Trevisan, C.N., DeCarolis, J.F., Ortiz-Garćıa, C., Pérez-
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M., Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., de Ros-
nay, P., Rozum, I., Vamborg, F., Villaume, S., Thépaut, J.-N.: The era5
global reanalysis. Quarterly Journal of the Royal Meteorological Society
(2020). https://doi.org/10.1002/qj.3803
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