168 research outputs found

    Twisted topological structures related to M-branes II: Twisted Wu and Wu^c structures

    Full text link
    Studying the topological aspects of M-branes in M-theory leads to various structures related to Wu classes. First we interpret Wu classes themselves as twisted classes and then define twisted notions of Wu structures. These generalize many known structures, including Pin^- structures, twisted Spin structures in the sense of Distler-Freed-Moore, Wu-twisted differential cocycles appearing in the work of Belov-Moore, as well as ones introduced by the author, such as twisted Membrane and twisted String^c structures. In addition, we introduce Wu^c structures, which generalize Pin^c structures, as well as their twisted versions. We show how these structures generalize and encode the usual structures defined via Stiefel-Whitney classes.Comment: 20 page

    Effect of Test Sequence on Maximal Anaerobic and Aerobic Power Achievement in Adults

    Get PDF
    International Journal of Exercise Science 14(4): 657-665, 2021. The purpose of this study was to examine the effect of test sequence on adults’ ability to achieve maximal aerobic and anaerobic power during a single assessment visit. Forty-one adults (24 men, 17 women; 22.0 ± 1.8 years) completed two baseline visits in randomized order consisting of either a maximal oxygen consumption (V̇O2max) or Wingate anaerobic test (WAnT). The subsequent experimental visit consisted of both V̇O2max and WAnT in randomized order separated by 20 minutes of rest. Mixed-model ANOVAs compared baseline and experimental performance between and within groups. Chi Squared Goodness of Fit tests determined if test sequence significantly affected V̇O2max criteria achievement. Significant interaction effects were observed for relative V̇O2max (p = 0.005), RER (p \u3c 0.001), and exercise time (p = 0.022). Within WAnT/V̇O2max subjects, these values significantly decreased from baseline to experimental tests. No differences were found for WAnT values. During the experimental session, 50% of subjects who performed WAnt/V̇O2max and 81% of subjects who performed V̇O2max/WAnT achieved a valid V̇O2max. Chi squared analysis found the change to be significant in WAnT/V̇O2max subjects only. Therefore, performing the WAnT before V̇O2max sequence significantly reduced the percent of subjects who achieved V̇O2max criteria. These findings indicate that the sequence of V̇O2max testing before a WAnT allowed maximal results similar to expected baseline values

    Topological Hochschild homology of Thom spectra and the free loop space

    Full text link
    We describe the topological Hochschild homology of ring spectra that arise as Thom spectra for loop maps f: X->BF, where BF denotes the classifying space for stable spherical fibrations. To do this, we consider symmetric monoidal models of the category of spaces over BF and corresponding strong symmetric monoidal Thom spectrum functors. Our main result identifies the topological Hochschild homology as the Thom spectrum of a certain stable bundle over the free loop space L(BX). This leads to explicit calculations of the topological Hochschild homology for a large class of ring spectra, including all of the classical cobordism spectra MO, MSO, MU, etc., and the Eilenberg-Mac Lane spectra HZ/p and HZ.Comment: 58 page

    Twisted topological structures related to M-branes

    Full text link
    Studying the M-branes leads us naturally to new structures that we call Membrane-, Membrane^c-, String^K(Z,3)- and Fivebrane^K(Z,4)-structures, which we show can also have twisted counterparts. We study some of their basic properties, highlight analogies with structures associated with lower levels of the Whitehead tower of the orthogonal group, and demonstrate the relations to M-branes.Comment: 17 pages, title changed on referee's request, minor changes to improve presentation, typos correcte

    The Virtual Climate Data Server (vCDS): An iRODS-Based Data Management Software Appliance Supporting Climate Data Services and Virtualization-as-a-Service in the NASA Center for Climate Simulation

    Get PDF
    Scientific data services are becoming an important part of the NASA Center for Climate Simulation's mission. Our technological response to this expanding role is built around the concept of a Virtual Climate Data Server (vCDS), repetitive provisioning, image-based deployment and distribution, and virtualization-as-a-service. The vCDS is an iRODS-based data server specialized to the needs of a particular data-centric application. We use RPM scripts to build vCDS images in our local computing environment, our local Virtual Machine Environment, NASA s Nebula Cloud Services, and Amazon's Elastic Compute Cloud. Once provisioned into one or more of these virtualized resource classes, vCDSs can use iRODS s federation capabilities to create an integrated ecosystem of managed collections that is scalable and adaptable to changing resource requirements. This approach enables platform- or software-asa- service deployment of vCDS and allows the NCCS to offer virtualization-as-a-service: a capacity to respond in an agile way to new customer requests for data services

    Fragmentation production of doubly heavy baryons

    Get PDF
    Baryons with a single heavy quark are being studied experimentally at present. Baryons with two units of heavy flavor will be abundantly produced not only at future colliders, but also at existing facilities. In this paper we study the production via heavy quark fragmentation of baryons containing two heavy quarks at the Tevatron, the LHC, HERA, and the NLC. The production rate is woefully small at HERA and at the NLC, but significant at pppp and ppˉp\bar{p} machines. We present distributions in various kinematical variables in addition to the integrated cross sections at hadron colliders.Comment: 13 pages, macro package epsfig needed, 6 .eps figure files in a separate uuencoded, compressed and tarred file; complete paper available at http://www.physics.carleton.ca/~mad/papers/paper.p

    Regge calculus from a new angle

    Full text link
    In Regge calculus space time is usually approximated by a triangulation with flat simplices. We present a formulation using simplices with constant sectional curvature adjusted to the presence of a cosmological constant. As we will show such a formulation allows to replace the length variables by 3d or 4d dihedral angles as basic variables. Moreover we will introduce a first order formulation, which in contrast to using flat simplices, does not require any constraints. These considerations could be useful for the construction of quantum gravity models with a cosmological constant.Comment: 8 page
    • …
    corecore