213 research outputs found

    Particle Size Specific Magnetic Properties Across the Norwegian‐Greenland Seas: Insights Into the Influence of Sediment Source and Texture on Bulk Magnetic Records

    Get PDF
    We make fundamental observations of the particle size variability of magnetic properties from 71 core tops that span the southern Greenland and Norwegian Seas. These data provide the first detailed regional characterization of how bulk magnetic properties vary with sediment texture, sediment source, and sediment transport. Magnetic susceptibility (MS) and hysteresis parameters were measured on the bulk sediment and the five constituent sediment particle size fractions (clay, fine silt, medium silt, coarse silt, and sand). The median MS value of the medium silt size fraction is ~3–5 times higher than that of the sand and clay size fractions and results in a strong sensitivity of bulk MS to sediment texture. Hysteresis properties of the clay size fraction are relatively homogeneous and contrast that silt and sand size fractions which show regional differences across the study area. These coarser fractions are more transport limited and using medium silt hysteresis measurements and low temperature MS behavior we establish three endmembers that effectively explain the variability observed across the region. We model the response of bulk magnetic properties to changes in sediment texture and suggest that variations in sediment source are required to explain the bulk magnetic property variability observed in cores across the southern Greenland and Norwegian Seas. These findings imply that sediment source has a greater influence on driving bulk magnetic property variability across this region than has previously been assumed

    Millennial-Scale Instability in the Geomagnetic Field Prior to the Matuyama-Brunhes Reversal

    Get PDF
    Changes in the Earth's magnetic field have global significance that reach from the outer core extending out to the uppermost atmosphere. Paleomagnetic records derived from sedimentary and volcanic sequences provide important insights into the geodynamo processes that govern the largest geomagnetic changes (polarity reversals), but dating uncertainties have hindered progress in this understanding. Here, we report a paleomagnetic record from multiple lava flows on Tahiti that bracket the Matuyama‐Brunhes (M‐B) polarity reversal ∌771,000 years ago. Our high‐precision ^(40)Ar/^(39)Ar ages constrain several rapid and short‐lived changes in field orientation up to 33,000 years prior to the M‐B reversal. These changes are similar to ones identified in other less well‐dated lava flows in Maui, Chile, and La Palma that occurred during an extended period of reduced field strength recorded in sediments. We use a simple stochastic model to show that these rapid polarity changes are highly attenuated in sediment records with low sedimentation rates. This prolonged 33,000 year period of reduced field strength and increased geomagnetic instability supports models that show frequent centennial‐to‐millennial‐scale polarity changes in the presence of a strongly weakened dipole field

    Social Computing for Healthcare Organizations

    Get PDF
    Social computing has taken the world by storm in the past decade. Today, there are around 500 million users on Facebook alone. Previous research studied how and why individuals use Facebook in social life; yet relatively little research has been conducted on how organizations utilize Facebook to interact with an expansive population of social computing users. The healthcare sector has been investing a lot of time and money to improve patient-centeredness and patient involvement in the provision of care. This poster was also presented at the 2011 American Medical Informatics Association meeting

    Millennial-Scale Instability in the Geomagnetic Field Prior to the Matuyama-Brunhes Reversal

    Get PDF
    Changes in the Earth's magnetic field have global significance that reach from the outer core extending out to the uppermost atmosphere. Paleomagnetic records derived from sedimentary and volcanic sequences provide important insights into the geodynamo processes that govern the largest geomagnetic changes (polarity reversals), but dating uncertainties have hindered progress in this understanding. Here, we report a paleomagnetic record from multiple lava flows on Tahiti that bracket the Matuyama‐Brunhes (M‐B) polarity reversal ∌771,000 years ago. Our high‐precision ^(40)Ar/^(39)Ar ages constrain several rapid and short‐lived changes in field orientation up to 33,000 years prior to the M‐B reversal. These changes are similar to ones identified in other less well‐dated lava flows in Maui, Chile, and La Palma that occurred during an extended period of reduced field strength recorded in sediments. We use a simple stochastic model to show that these rapid polarity changes are highly attenuated in sediment records with low sedimentation rates. This prolonged 33,000 year period of reduced field strength and increased geomagnetic instability supports models that show frequent centennial‐to‐millennial‐scale polarity changes in the presence of a strongly weakened dipole field

    Andean drought and glacial retreat tied to Greenland warming during the last glacial period

    Get PDF
    Abrupt warming events recorded in Greenland ice cores known as Dansgaard-Oeschger (DO) interstadials are linked to changes in tropical circulation during the last glacial cycle. Corresponding variations in South American summer monsoon (SASM) strength are documented, most commonly, in isotopic records from speleothems, but less is known about how these changes affected precipitation and Andean glacier mass balance. Here we present a sediment record spanning the last ~50 ka from Lake Junín (Peru) in the tropical Andes that has sufficient chronologic precision to document abrupt climatic events on a centennial-millennial time scale. DO events involved the near-complete disappearance of glaciers below 4700 masl in the eastern Andean cordillera and major reductions in the level of Peru’s second largest lake. Our results reveal the magnitude of the hydroclimatic disruptions in the highest reaches of the Amazon Basin that were caused by a weakening of the SASM during abrupt arctic warming. Accentuated warming in the Arctic could lead to significant reductions in the precipitation-evaporation balance of the southern tropical Andes with deleterious effects on this densely populated region of South America

    Andean drought and glacial retreat tied to Greenland warming during the last glacial period

    Get PDF
    Abrupt warming events recorded in Greenland ice cores known as Dansgaard-Oeschger (DO) interstadials are linked to changes in tropical circulation during the last glacial cycle. Corresponding variations in South American summer monsoon (SASM) strength are documented, most commonly, in isotopic records from speleothems, but less is known about how these changes affected precipitation and Andean glacier mass balance. Here we present a sediment record spanning the last ~50 ka from Lake Junín (Peru) in the tropical Andes that has sufficient chronologic precision to document abrupt climatic events on a centennial-millennial time scale. DO events involved the near-complete disappearance of glaciers below 4700 masl in the eastern Andean cordillera and major reductions in the level of Peru’s second largest lake. Our results reveal the magnitude of the hydroclimatic disruptions in the highest reaches of the Amazon Basin that were caused by a weakening of the SASM during abrupt arctic warming. Accentuated warming in the Arctic could lead to significant reductions in the precipitation-evaporation balance of the southern tropical Andes with deleterious effects on this densely populated region of South America

    U-Th dating of lake sediments: Lessons from the 700 ka sediment record of Lake JunĂ­n, Peru

    Get PDF
    Deep sediment cores from long-lived lake basins are fundamental records of paleoenvironmental history, but the power of these reconstructions has been often limited by poor age control. Uranium-thorium (U-Th) dating has the potential to fill a gap in current geochronological tools available for such sediment archives. We present our systematic approach to U-Th date carbonate-rich sediments from the ∌100 m drill core from Lake JunĂ­n, Peru. The results form the foundation of an age-depth model spanning ∌700 kyrs. High uranium concentrations (0.3–4 ppm) of these sediments allow us to date smaller amounts of material, giving us the opportunity to improve sample selection by avoiding detrital contamination, the greatest factor limiting the success of previous U-Th dating efforts in other lake basins. Despite this advantage, the dates from 174 analyses on 55 bulk carbonate samples reveal significant scatter that cannot be resolved with traditional isochrons, suggesting that at least some of the sediments have not remained closed systems. To understand the source of noise in the geochronological data, we first apply threshold criteria that screen samples by their U/Th ratio, reproducibility, and ÎŽÂČ³⁎U_(initial) value. We then compare these results with facies types, trace element concentrations, carbonate and total organic carbon content, color reflectance, mineralogy, and ostracode shell color to investigate the causes of open system behavior. Alongside simulations of the isotopic evolution of our samples, we find that the greatest impediment to U-Th dating of these sediments is not detrital contamination, but rather post-depositional remobilization of uranium. Examining U-Th data in these contexts, we identify samples that have likely experienced the least amount of alteration, and use dates from those samples as constraints for the age-depth model. Our work has several lessons for future attempts to U-Th date lake sediments, namely that geologic context is equally as important as the accuracy and precision of analytical measurements. In addition, we caution that significant geologic scatter may remain undetected if not for labor intensive tests of reproducibility achieved through replication. As a result of this work, the deep sediment core from Lake JunĂ­n is the only continuous record in the tropical Andes spanning multiple glacial cycles that is constrained entirely by independent radiometric dates
    • 

    corecore