26,619 research outputs found

    Low Intensity Decameter Emissions from Jupiter

    Get PDF
    Low intensity decameter emissions from Jupite

    Measurements of antenna impedance in the ionosphere. II. Observing frequency greater than the electron gyro frequency

    Get PDF
    Short dipole antenna impedance measurements in ionosphere at observing frequency above electron gyrofrequenc

    Non-perturbative corrections to mean-field behavior: spherical model on spider-web graph

    Full text link
    We consider the spherical model on a spider-web graph. This graph is effectively infinite-dimensional, similar to the Bethe lattice, but has loops. We show that these lead to non-trivial corrections to the simple mean-field behavior. We first determine all normal modes of the coupled springs problem on this graph, using its large symmetry group. In the thermodynamic limit, the spectrum is a set of δ\delta-functions, and all the modes are localized. The fractional number of modes with frequency less than ω\omega varies as exp(C/ω)\exp (-C/\omega) for ω\omega tending to zero, where CC is a constant. For an unbiased random walk on the vertices of this graph, this implies that the probability of return to the origin at time tt varies as exp(Ct1/3)\exp(- C' t^{1/3}), for large tt, where CC' is a constant. For the spherical model, we show that while the critical exponents take the values expected from the mean-field theory, the free-energy per site at temperature TT, near and above the critical temperature TcT_c, also has an essential singularity of the type exp[K(TTc)1/2]\exp[ -K {(T - T_c)}^{-1/2}].Comment: substantially revised, a section adde

    Effects of an embedding bulk fluid on phase separation dynamics in a thin liquid film

    Full text link
    Using dissipative particle dynamics simulations, we study the effects of an embedding bulk fluid on the phase separation dynamics in a thin planar liquid film. The domain growth exponent is altered from 2D to 3D behavior upon the addition of a bulk fluid, even though the phase separation occurs in 2D geometry. Correlated diffusion measurements in the film show that the presence of bulk fluid changes the nature of the longitudinal coupling diffusion coefficient from logarithmic to algebraic dependence of 1/s, where s is the distance between the two particles. This result, along with the scaling exponents, suggests that the phase separation takes place through the Brownian coagulation process.Comment: 6 pages, 5 figures. Accepted for publication in Europhys. Let

    Stringent Phenomenological Investigation into Heterotic String Optical Unification

    Get PDF
    For the weakly coupled heterotic string (WCHS) there is a well-known factor of twenty conflict between the minimum string coupling unification scale, Lambda_H ~5x10^(17) GeV, and the projected MSSM unification scale, Lambda_U ~ 2.5x10^(16) GeV, assuming an intermediate scale desert (ISD). Renormalization effects of intermediate scale MSSM-charged exotics (ISME) (endemic to quasi-realistic string models) can resolve this issue, pushing the MSSM scale up to the string scale. However, for a generic string model, this implies that the projected Lambda_U unification under ISD is accidental. If the true unification scale is 5.0x10^(17) GeV, is it possible that illusionary unification at 2.5x10^(17) GeV in the ISD scenario is not accidental? If it is not, then under what conditions would the assumption of ISME in a WCHS model imply apparent unification at Lambda_U when ISD is falsely assumed? Geidt's "optical unification" suggests that Lambda_U is not accidental, by offering a mechanism whereby a generic MSSM scale Lambda_U < Lambda_H is guaranteed. A WCHS model was constructed that offers the possibility of optical unification, depending on the availability of anomaly-cancelling flat directions meeting certain requirements. This paper reports on the systematic investigation of the optical unification properties of the set of stringent flat directions of this model. Stringent flat directions can be guaranteed to be F-flat to all finite order (or to at least a given finite order consistent with electroweak scale supersymmetry breaking) and can be viewed as the likely roots of more general flat directions. Analysis of the phenomenology of stringent flat directions gives an indication of the remaining optical unification phenomenology that must be garnered by flat directions developed from them.Comment: standard latex, 18 pages of tex

    Spreading of thin films assisted by thermal fluctuations

    Full text link
    We study the spreading of viscous drops on a solid substrate, taking into account the effects of thermal fluctuations in the fluid momentum. A nonlinear stochastic lubrication equation is derived, and studied using numerical simulations and scaling analysis. We show that asymptotically spreading drops admit self-similar shapes, whose average radii can increase at rates much faster than these predicted by Tanner's law. We discuss the physical realizability of our results for thin molecular and complex fluid films, and predict that such phenomenon can in principal be observed in various flow geometries.Comment: 5 pages, 3 figure

    Family of solvable generalized random-matrix ensembles with unitary symmetry

    Full text link
    We construct a very general family of characteristic functions describing Random Matrix Ensembles (RME) having a global unitary invariance, and containing an arbitrary, one-variable probability measure which we characterize by a `spread function'. Various choices of the spread function lead to a variety of possible generalized RMEs, which show deviations from the well-known Gaussian RME originally proposed by Wigner. We obtain the correlation functions of such generalized ensembles exactly, and show examples of how particular choices of the spread function can describe ensembles with arbitrary eigenvalue densities as well as critical ensembles with multifractality.Comment: 4 pages, to be published in Phys. Rev. E, Rapid Com

    Scalable numerical approach for the steady-state ab initio laser theory

    Get PDF
    We present an efficient and flexible method for solving the non-linear lasing equations of the steady-state ab initio laser theory. Our strategy is to solve the underlying system of partial differential equations directly, without the need of setting up a parametrized basis of constant flux states. We validate this approach in one-dimensional as well as in cylindrical systems, and demonstrate its scalability to full-vector three-dimensional calculations in photonic-crystal slabs. Our method paves the way for efficient and accurate simulations of lasing structures which were previously inaccessible.Comment: 17 pages, 8 figure

    The Continuum Limit and Integral Vacuum Charge

    Full text link
    We investigate a commonly used formula which seems to give non-integral vacuum charge in the continuum limit. We show that the limit is subtle and care must be taken to get correct results.Comment: 5 pages. Submitted to JETP Letter

    The magnetic properties of 177^{\rm 177}Hf and 180^{\rm 180}Hf in the strong coupling deformed model

    Get PDF
    This paper reports NMR measurements of the magnetic dipole moments of two high-K isomers, the 37/2^-, 51.4 m, 2740 keV state in 177^{\rm 177}Hf and the 8^-, 5.5 h, 1142 keV state in 180^{\rm 180}Hf by the method of on-line nuclear orientation. Also included are results on the angular distributions of gamma transitions in the decay of the 177^{\rm 177}Hf isotope. These yield high precision E2/M1 multipole mixing ratios for transitions in bands built on the 23/2+^+, 1.1 s, isomer at 1315 keV and on the 9/2+^+, 0.663 ns, isomer at 321 keV. The new results are discussed in the light of the recently reported finding of systematic dependence of the behavior of the gR_{\rm R} parameter upon the quasi-proton and quasi-neutron make up of high-K isomeric states in this region.Comment: 9 pages, 9 figures, accepted for publication in Physical Review
    corecore