32,861 research outputs found

    Thermal control for storage of cryogenic propellants in a common-bulkhead tank: A concept

    Get PDF
    Simple, reliable ground-hold refrigeration system for common-bulkhead tank meets design criteria and objectives for ground-hold of oxygen difluoride and diborane. System is failsafe and malfunctions can be rectified without interruption of basic system functions

    Safe transport of diborane in a dual refrigerant system: A concept

    Get PDF
    Mobile transport system, that can be carried by truck and parked in storage area, consists of an inner container capable of holding 363 kg of diborane and an external, dual refrigeration unit which uses liquid nitrogen and Freon-14

    The Skyrme Interaction in finite nuclei and nuclear matter

    Get PDF
    Self-consistent mean-field models are a powerful tool in the investigation of nuclear structure and low-energy dynamics. They are based on effective energy-density functionals, often formulated in terms of effective density-dependent nucleon-nucleon interactions. The free parameters of the functional are adjusted to empirical data. A proper choice of these parameters requires a comprehensive set of constraints covering experimental data on finite nuclei, concerning static as well as dynamical properties, empirical characteristics of nuclear matter, and observational information on nucleosynthesis, neutron stars and supernovae. This work aims at a comprehensive survey of the performance of one of the most successful non-relativistic self-consistent method, the Skyrme-Hartree-Fock model (SHF), with respect to these constraints. A full description of the Skyrme functional is given and its relation to other effective interactions is discussed. The validity of the application of SHF far from stability and in dense environments beyond the nuclear saturation density is critically assessed. The use of SHF in models extended beyond the mean field approximation by including some correlations is discussed. Finally, future prospects for further development of SHF towards a more consistent application of the existing and promisingly newly developing constraints are outlined.Comment: 71 pages, 22 figures. Accepted for publication in Prog.Part.Nucl.Phy

    From Microscales to Macroscales in 3D: Selfconsistent Equation of State for Supernova and Neutron Star Models

    Full text link
    First results from a fully self-consistent, temperature-dependent equation of state that spans the whole density range of neutron stars and supernova cores are presented. The equation of state (EoS) is calculated using a mean-field Hartree-Fock method in three dimensions (3D). The nuclear interaction is represented by the phenomenological Skyrme model in this work, but the EoS can be obtained in our framework for any suitable form of the nucleon-nucleon effective interaction. The scheme we employ naturally allows effects such as (i) neutron drip, which results in an external neutron gas, (ii) the variety of exotic nuclear shapes expected for extremely neutron heavy nuclei, and (iii) the subsequent dissolution of these nuclei into nuclear matter. In this way, the equation of state is calculated across phase transitions without recourse to interpolation techniques between density regimes described by different physical models. EoS tables are calculated in the wide range of densities, temperature and proton/neutron ratios on the ORNL NCCS XT3, using up to 2000 processors simultaneously.Comment: 6 pages, 11 figures. Published in conference proceedings Journal of Physics: Conference Series 46 (2006) 408. Extended version to be submitted to Phys. Rev.

    Satellite observations of type 3 solar radio bursts at low frequencies

    Get PDF
    Type III solar radio bursts were observed from 10 MHz to 10 KHz by satellite experiments above the terrestrial plasmasphere. Solar radio emission in this frequency range results from excitation of the interplanetary plasma by energetic particles propagating outward along open field lines over distances from 5 solar radii to at least 1 AU from the sun. This review summarizes the morphology, characteristics and analysis of individual as well as storms of bursts. Burst rise times are interpreted in terms of exciter length and dispersion while decay times refer to the radiation damping process. The combination of radio observations at the lower frequencies and in-situ measurements on nonrelativistic electrons at 1 AU provide data on the energy range and efficiency of the wave-particle interactions responsible for the radio emission

    Type 3 solar radio burst storms observed at low frequencies. Part 1 - Storm morphology

    Get PDF
    Low-frequency observations of type 3 solar radio bursts as function of solar rotatio

    HEAO-A nominal scanning observation schedule

    Get PDF
    The HEAO-A observatory, scheduled for launch in late June 1977, will spend most of its orbital lifetime in a scanning mode, spining from 0.03 to 0.1 rpm about an axis aligned with the sun. The dates of availability in the scan band are given for a list of 248 X-ray sources. Celestial maps of source locations and scan planes, and examples of the nighttime elevation of available sources are presented. This document is intended to aid ground-based observers in planning coordinated observations with HEAO-A

    Type 2 radio bursts, interplanetary shocks and energetic particle events

    Get PDF
    Using the ISEE-3 radio astronomy experiment data 37 interplanetary (IP) type II bursts have been identified in the period September 1978 to December 1981. These events and the associated phenomena are listed. The events are preceded by intense, soft X ray events with long decay times (LDEs) and type II and/or type IV bursts at meter wavelengths. The meter wavelength type II bursts are usually intense and exhibit herringbone structure. The extension of the herringbone structure into the kilometer wavelength range results in the occurrence of a shock accelerated (SA) event. The majority of the interplanetary type II bursts are associated with energetic particle events. These results support other studies which indicate that energetic solar particles detected at 1 A.U. are generated by shock acceleration. From a preliminary analysis of the available data there appears to be a high correlation with white light coronal transients

    Mecho: Year one

    Get PDF

    Low Intensity Decameter Emissions from Jupiter

    Get PDF
    Low intensity decameter emissions from Jupite
    corecore