2,825 research outputs found

    Quantum Particle-Trajectories and Geometric Phase

    Full text link
    "Particle"-trajectories are defined as integrable dxμdpμ=0dx_\mu dp^\mu = 0 paths in projective space. Quantum states evolving on such trajectories, open or closed, do not delocalise in (x,p)(x, p) projection, the phase associated with the trajectories being related to the geometric (Berry) phase and the Classical Mechanics action. High Energy Physics properties of states evolving on "particle"-trajectories are discussed.Comment: 4 page

    On the Mysterious Propulsion of Synechococcus

    Get PDF
    We propose a model for the self-propulsion of the marine bacterium Synechococcus utilizing a continuous looped helical track analogous to that found in Myxobacteria [1]. In our model cargo-carrying protein motors, driven by proton-motive force, move along a continuous looped helical track. The movement of the cargo creates surface distortions in the form of small amplitude traveling ridges along the S-layer above the helical track. The resulting fluid motion adjacent to the helical ribbon provides the propulsive thrust. A variation on the helical rotor model of [1] allows the motors to be anchored to the peptidoglycan layer, where they drive rotation of the track creating traveling helical waves along the S-layer. We derive expressions relating the swimming speed to the amplitude, wavelength, and velocity of the surface waves induced by the helical rotor, and show that they fall in reasonable ranges to explain the velocity and rotation rate of swimming Synechococcus

    Human gene therapy for RPE65 isomerase deficiency activates the retinoid cycle of vision but with slow rod kinetics

    Get PDF
    The RPE65 gene encodes the isomerase of the retinoid cycle, the enzymatic pathway that underlies mammalian vision. Mutations in RPE65 disrupt the retinoid cycle and cause a congenital human blindness known as Leber congenital amaurosis (LCA). We used adeno-associated virus-2-based RPE65 gene replacement therapy to treat three young adults with RPE65-LCA and measured their vision before and up to 90 days after the intervention. All three patients showed a statistically significant increase in visual sensitivity at 30 days after treatment localized to retinal areas that had received the vector. There were no changes in the effect between 30 and 90 days. Both cone- and rod-photoreceptor-based vision could be demonstrated in treated areas. For cones, there were increases of up to 1.7 log units (i.e., 50 fold); and for rods, there were gains of up to 4.8 log units (i.e., 63,000 fold). To assess what fraction of full vision potential was restored by gene therapy, we related the degree of light sensitivity to the level of remaining photoreceptors within the treatment area. We found that the intervention could overcome nearly all of the loss of light sensitivity resulting from the biochemical blockade. However, this reconstituted retinoid cycle was not completely normal. Resensitization kinetics of the newly treated rods were remarkably slow and required 8 h or more for the attainment of full sensitivity, compared with \u3c1 h in normal eyes. Cone-sensitivity recovery time was rapid. These results demonstrate\u3edramatic, albeit imperfect, recovery of rod- and cone-photoreceptor-based vision after RPE65 gene therapy

    A Strong-Coupling Analysis of the Lattice CPN−1CP^{N-1} Models in the Presence of a θ\theta Term

    Full text link
    A θ\theta term, which couples to topological charge, is added to the lattice CPN−1CP^{N-1} model. The strong-coupling character expansion is developed. The series for the free energy and mass gap are respectively computed to tenth order and fourth order. Several features of the strong-coupling analysis emerge. One is the loss of superconfinement. Another is that in the intermediate coupling constant region, there are indications of a transition to a deconfining phase when θ\theta is sufficiently large. The transition is like the one which has been observed in Monte Carlo simulations of a similar lattice CPN−1CP^{N-1} action.Comment: Latex file, 19 pages plus a postscript file of 4 figures, to appear in Physical Review

    ABCA4-Associated Retinal Degenerations Spare Structure and Function of the Human Parapapillary Retina

    Get PDF
    PURPOSE. To study the parapapillary retinal region in patients with ABCA4-associated retinal degenerations. METHODS. Patients with Stargardt disease or cone-rod dystrophy and disease-causing variants in the ABCA4 gene were included. Fixation location was determined under fundus visualization, and central cone-mediated vision was measured. Intensity and texture abnormalities of autofluorescence (AF) images were quantified. Parapapillary retina of an eye donor with ungenotyped Stargardt disease was examined microscopically. RESULTS. AF images ranged from normal, to spatially homogenous abnormal increase of intensity, to a spatially heterogenous speckled pattern, to variably sized patches of low intensity. A parapapillary ring of normal-appearing AF was visible at all disease stages. Quantitative analysis of the intensity and texture properties of AF images showed the preserved region to be an annulus, at least 0.6 mm wide, surrounding the optic nerve head. A similar region of relatively preserved photoreceptor nuclei was apparent in the donor retina. In patients with foveal fixation, there was better cone sensitivity at a parapapillary locus in the nasal retina than at the same eccentricity in the temporal retina. In patients with eccentric fixation, ϳ30% had a preferred retinal locus in the parapapillary retina. CONCLUSIONS. Human retinal degenerations caused by ABCA4 mutations spare the structure of retina and RPE in a circular parapapillary region that commonly serves as the preferred fixation locus when central vision is lost. The retina between fovea and optic nerve head could serve as a convenient, accessible, and informative region for structural and functional studies to determine natural history or outcome of therapy in ABCA4-associated disease. (Invest Ophthalmol Vis Sci. 2005; 46:4739 -4746

    Shiga toxin 2-induced intestinal pathology in infant rabbits is A-subunit dependent and responsive to the tyrosine kinase and potential ZAK inhibitor imatinib

    Get PDF
    Shiga toxin producing Escherichia coli (STEC) are a major cause of food-borne illness worldwide. However, a consensus regarding the role Shiga toxins play in the onset of diarrhea and hemorrhagic colitis (HC) is lacking. One of the obstacles to understanding the role of Shiga toxins to STEC-mediated intestinal pathology is a deficit in small animal models that perfectly mimic human disease. Infant rabbits have been previously used to study STEC and/or Shiga toxin-mediated intestinal inflammation and diarrhea. We demonstrate using infant rabbits that Shiga toxin-mediated intestinal damage requires A-subunit activity, and like the human colon, that of the infant rabbit expresses the Shiga toxin receptor Gb3. We also demonstrate that Shiga toxin treatment of the infant rabbit results in apoptosis and activation of p38 within colonic tissues. Finally we demonstrate that the infant rabbit model may be used to test candidate therapeutics against Shiga toxin-mediated intestinal damage. While the p38 inhibitor SB203580 and the ZAK inhibitor DHP-2 were ineffective at preventing Shiga toxin-mediated damage to the colon, pretreatment of infant rabbits with the drug imatinib resulted in a decrease of Shiga toxin-mediated heterophil infiltration of the colon. Therefore, we propose that this model may be useful in elucidating mechanisms by which Shiga toxins could contribute to intestinal damage in the human
    • …
    corecore