260 research outputs found
Effect of Age and Diabetes on the Response of Mesenchymal Progenitor Cells to Fibrin Matrices
Mesenchymal stem cells are showing increasing promise in applications such as tissue engineering and cell therapy. MSC are low in number in bone marrow, and therefore in vitro expansion is often necessary. In vivo, stem cells often reside within a niche acting to protect the cells. These niches are composed of niche cells, stem cells, and extracellular matrix. When blood vessels are damaged, a fibrin clot forms as part of the wound healing response. The clot constitutes a form of stem cell niche as it appears to maintain the stem cell phenotype while supporting MSC proliferation and differentiation during healing. This is particularly appropriate as fibrin is increasingly being suggested as a scaffold meaning that fibrin-based tissue engineering may to some extent recapitulate wound healing. Here, we describe how fibrin modulates the clonogenic capacity of MSC derived from young/old human donors and normal/diabetic rats. Fibrin was prepared using different concentrations to modulate the stiffness of the substrate. MSC were expanded on these scaffolds and analysed. MSC showed an increased self-renewal on soft surfaces. Old and diabetic cells lost the ability to react to these signals and can no longer adapt to the changed environment
The role of lipid metabolism in aging, lifespan regulation, and age-related disease
An emerging body of data suggests that lipid metabolism has an important role to play in the aging process. Indeed, a plethora of dietary, pharmacological, genetic, and surgical lipid-related interventions extend lifespan in nematodes, fruit flies, mice, and rats. For example, the impairment of genes involved in ceramide and sphingolipid synthesis extends lifespan in both worms and flies. The overexpression of fatty acid amide hydrolase or lysosomal lipase prolongs life in Caenorhabditis elegans, while the overexpression of diacylglycerol lipase enhances longevity in both C. elegans and Drosophila melanogaster. The surgical removal of adipose tissue extends lifespan in rats, and increased expression of apolipoprotein D enhances survival in both flies and mice. Mouse lifespan can be additionally extended by the genetic deletion of diacylglycerol acyltransferase 1, treatment with the steroid 17-α-estradiol, or a ketogenic diet. Moreover, deletion of the phospholipase A2 receptor improves various healthspan parameters in a progeria mouse model. Genome-wide association studies have found several lipid-related variants to be associated with human aging. For example, the epsilon 2 and epsilon 4 alleles of apolipoprotein E are associated with extreme longevity and late-onset neurodegenerative disease, respectively. In humans, blood triglyceride levels tend to increase, while blood lysophosphatidylcholine levels tend to decrease with age. Specific sphingolipid and phospholipid blood profiles have also been shown to change with age and are associated with exceptional human longevity. These data suggest that lipid-related interventions may improve human healthspan and that blood lipids likely represent a rich source of human aging biomarkers
Systematic Review of miRNA as Biomarkers in Alzheimer's Disease.
Currently there are 850,000 people with Alzheimer's disease in the UK, with an estimated rise to 1.1 million by 2025. Alzheimer's disease is characterised by the accumulation of amyloid-beta plaques and hyperphosphorylated tau in the brain causing a progressive decline in cognitive impairment. Small non-coding microRNA (miRNA) sequences have been found to be deregulated in the peripheral blood of Alzheimer patients. A systematic review was conducted to extract all miRNA found to be significantly deregulated in the peripheral blood. These deregulated miRNAs were cross-referenced against the miRNAs deregulated in the brain at Braak Stage III. This resulted in a panel of 10 miRNAs (hsa-mir-107, hsa-mir-26b, hsa-mir-30e, hsa-mir-34a, hsa-mir-485, hsa-mir200c, hsa-mir-210, hsa-mir-146a, hsa-mir-34c, and hsa-mir-125b) hypothesised to be deregulated early in Alzheimer's disease, nearly 20 years before the onset of clinical symptoms. After network analysis of the 10 miRNAs, they were found to be associated with the immune system, cell cycle, gene expression, cellular response to stress, neuron growth factor signalling, wnt signalling, cellular senescence, and Rho GTPases
Tissue-specific ageing of rat tendon-derived progenitor cells
Although ageing predisposes tendons for various pathologies, the effect of ageing on tendon stem/progenitor
cells has received little attention. In this study, we compared tendon progenitor cells from patellar, Achilles and tail
tendons derived from young (8-12 weeks old) and mature (52 weeks old) rats. The mean number of progenitor cells/
mg was reduced with age in all three tendons and this reduction reached statistical significance in both Achilles
and tail tendons. As determined by colony-forming-unit-fibroblasts assays, mean colony number and size were both
statistically unchanged with age in patellar and Achilles tendons. In contrast, both colony number and size were
significantly reduced in cultures derived from mature tail tendons relative to those derived from young tail tendons.
While colonies per mg tissue were reduced with age in all three tendons, this reduction was only statistically significant
for tail tendon. Lipofuscin and ROS content in cell progenitors were unchanged with age in all 3 tendons. Conversely,
carbonyl content was significantly increased and telomerase activity significantly decreased in mature tail tendon
cells relative to young tendon cells. These data suggest that, in the first year of life, rat Achilles and patellar tendons
suffer relatively little oxidative damage. In contrast, tail tendons experience an increase protein oxidation, a decrease
in telomerase activity and a substantial reduction in progenitor cell numbers. That the source and age of tendon
progenitors used influences the quality and density of the progenitor cells isolated from it has important implications
for clinical strategies aimed at tendon repair
Cryopreservation of dermal fibroblasts and keratinocytes in hydroxyethyl starch–based cryoprotectants
Background: Preservation of human skin fibroblasts and keratinocytes is essential for the creation of skin tissue banks. For successful cryopreservation of cells, selection of an appropriate cryoprotectant agent (CPA) is imperative. The aim of this study was to identify CPAs that minimize toxic effects and allow for the preservation of human fibroblasts and keratinocytes in suspension and in monolayers.
Results: We cryopreserved human fibroblasts and keratinocytes with different CPAs and compared them to fresh, unfrozen cells. Cells were frozen in the presence and absence of hydroxyethyl starch (HES) or dimethyl sulfoxide (DMSO), the latter of which is a commonly used CPA known to exert toxic effects on cells. Cell numbers were counted immediately post-thaw as well as three days after thawing. Cellular structures were analyzed and counted by labeling nuclei, mitochondria, and actin filaments. We found that successful cryopreservation of suspended or adherent keratinocytes can be accomplished with a 10% HES or a 5% HES, 5% DMSO solution. Cell viability of fibroblasts cryopreserved in suspension was maintained with 10% HES or 5% HES, 5% DMSO solutions. Adherent, cryopreserved fibroblasts were successfully maintained with a 5% HES, 5% DMSO solution.
Conclusion: We conclude that skin tissue cells can be effectively cryopreserved by substituting all or a portion of DMSO with HES. Given that DMSO is the most commonly used CPA and is believed to be more toxic than HES, these findings are of clinical significance for tissue-based replacement therapies. Therapies that require the use of keratinocyte and fibroblast cells, such as those aimed at treating skin wounds or skin burns, may be optimized by substituting a portion or all of DMSO with HES during cryopreservation protocols
Cryopreservation of Mesenchymal Stem Cells Using Medical Grade Ice Nucleation Inducer.
Mesenchymal stem cells (MSCs) can differentiate into multiple different tissue lineages and have favourable immunogenic potential making them an attractive prospect for regenerative medicine. As an essential part of the manufacturing process, preservation of these cells whilst maintaining potential is of critical importance. An uncontrolled area of storage remains the rate of change of temperature during freezing and thawing. Controlled-rate freezers attempted to rectify this; however, the change of phase from liquid to solid introduces two extreme phenomena; a rapid rise and a rapid fall in temperature in addition to the intended cooling rate (normally -1 °C/min) as a part of the supercooling event in cryopreservation. Nucleation events are well known to initiate the freezing transition although their active use in the form of ice nucleation devices (IND) are in their infancy in cryopreservation. This study sought to better understand the effects of ice nucleation and its active instigation with the use of an IND in both a standard cryotube with MSCs in suspension and a high-throughput adhered MSC 96-well plate set-up. A potential threshold nucleation temperature for best recovery of dental pulp MSCs may occur around -10 °C and for larger volume cell storage, IND and fast thaw creates the most stable process. For adhered cells, an IND with a slow thaw enables greatest metabolic activity post-thaw. This demonstrates a necessity for a medical grade IND to be used in future regenerative medicine manufacturing with the parameters discussed in this study to create stable products for clinical cellular therapies
Cryopreservation of dermal fibroblasts and keratinocytes in hydroxyethyl starch–based cryoprotectants
Background: Preservation of human skin fibroblasts and keratinocytes is essential for the creation of skin tissue banks. For successful cryopreservation of cells, selection of an appropriate cryoprotectant agent (CPA) is imperative. The aim of this study was to identify CPAs that minimize toxic effects and allow for the preservation of human fibroblasts and keratinocytes in suspension and in monolayers.
Results: We cryopreserved human fibroblasts and keratinocytes with different CPAs and compared them to fresh, unfrozen cells. Cells were frozen in the presence and absence of hydroxyethyl starch (HES) or dimethyl sulfoxide (DMSO), the latter of which is a commonly used CPA known to exert toxic effects on cells. Cell numbers were counted immediately post-thaw as well as three days after thawing. Cellular structures were analyzed and counted by labeling nuclei, mitochondria, and actin filaments. We found that successful cryopreservation of suspended or adherent keratinocytes can be accomplished with a 10% HES or a 5% HES, 5% DMSO solution. Cell viability of fibroblasts cryopreserved in suspension was maintained with 10% HES or 5% HES, 5% DMSO solutions. Adherent, cryopreserved fibroblasts were successfully maintained with a 5% HES, 5% DMSO solution.
Conclusion: We conclude that skin tissue cells can be effectively cryopreserved by substituting all or a portion of DMSO with HES. Given that DMSO is the most commonly used CPA and is believed to be more toxic than HES, these findings are of clinical significance for tissue-based replacement therapies. Therapies that require the use of keratinocyte and fibroblast cells, such as those aimed at treating skin wounds or skin burns, may be optimized by substituting a portion or all of DMSO with HES during cryopreservation protocols
The aging signature: a hallmark of induced pluripotent stem cells?
The discovery that somatic cells can be induced into a pluripotent state by the expression of reprogramming factors has enormous potential for therapeutics and human disease modeling. With regard to aging and rejuvenation, the reprogramming process resets an aged, somatic cell to a more youthful state, elongating telomeres, rearranging the mitochondrial network, reducing oxidative stress, restoring pluripotency, and making numerous other alterations. The extent to which induced pluripotent stem cell (iPSC)s mime embryonic stem cells is controversial, however, as iPSCs have been shown to harbor an epigenetic memory characteristic of their tissue of origin which may impact their differentiation potential. Furthermore, there are contentious data regarding the extent to which telomeres are elongated, telomerase activity is reconstituted, and mitochondria are reorganized in iPSCs. Although several groups have reported that reprogramming efficiency declines with age and is inhibited by genes upregulated with age, others have successfully generated iPSCs from senescent and centenarian cells. Mixed findings have also been published regarding whether somatic cells generated from iPSCs are subject to premature senescence. Defects such as these would hinder the clinical application of iPSCs, and as such, more comprehensive testing of iPSCs and their potential aging signature should be conducted. © 2013 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd
Generation of human induced pluripotent stem cells using non-synthetic mRNA
Here we describe some of the crucial steps to generate induced pluripotent stemcells (iPSCs) usingmRNA transfection. Our approach uses a V. virus-derived capping enzyme instead of a cap-analog, ensuring 100% proper cap orientation for in vitro transcribedmRNA. V. virus\'' 2′-O-Methyltransferase enzymecreates a cap1 structure found in higher eukaryotes and has higher translation efficiency compared to other methods. Use of the polymeric transfection reagent polyethylenimine proved superior to other transfection methods. The mRNA created via this method did not trigger an intracellular immune response via human IFN-gamma (hIFN-γ) or alpha (hIFN-α) release, thus circumventing the use of suppressors. Resulting mRNA and protein
were expressed at high levels for over 48 h, thus obviating daily transfections. Using this method, we demonstrated swift activation of pluripotency associated genes in human fibroblasts. Low oxygen conditions further facilitated colony formation. Differentiation into different germ layers was confirmed via teratoma assay. Reprogramming with non-synthetic mRNA holds great promise for safe generation of iPSCs of human origin. Using the protocols described herein we hope to make this method more accessible to other groups as a fast, inexpensive, and non-viral reprogramming approach
Protective effects of alpha phenyl-tert-butyl nitrone and ascorbic acid in human adipose derived mesenchymal stem cells from differently aged donors.
Adipose-derived mesenchymal stem cells (ADSCs) are multipotent stem cells that promote therapeutic effects and are frequently used in autologous applications. Little is known about how ADSCs respond to genotoxic stress and whether or not donor age affects DNA damage and repair. In this study, we used the comet assay to assess DNA damage and repair in human ADSCs derived from young (20-40 years), middle-aged (41-60 years), and older (61+ years) donors following treatment with H2O2 or UV light. Tail lengths in H2O2-treated ADSCs were substantially higher than the tail lengths in UV-treated ADSCs. After 30 minutes of treatment with H2O2, ADSCs preconditioned with alpha phenyl-tert-butyl nitrone (PBN) or ascorbic acid (AA) showed a significant reduction in % tail DNA. The majority of ADSCs treated with PBN or AA displayed low olive tail movements at various timepoints. In general and indicative of DNA repair, % tail length and % tail DNA peaked at 30 minutes and then decreased to near-control levels at the 2 hour and 4 hour timepoints. Differently aged ADSCs displayed comparable levels of DNA damage in the majority of these experiments, suggesting that the age of the donor does not affect the DNA damage response in cultured ADSCs
- …