18 research outputs found
Gene modification by fast-track recombineering for cellular localization and isolation of components of plant protein complexes.
To accelerate the isolation of plant protein complexes and study cellular localization and interaction of their components, an improved recombineering protocol is described for simple and fast site-directed modification of
plant genes in bacterial artificial chromosomes (BACs). Coding sequences of fluorescent and affinity tags were
inserted into genes and transferred together with flanking genomic sequences of desired size by recombination
into Agrobacterium plant transformation vectors using three steps of E. coli transformation with PCR-amplified
DNA fragments. Application of fast-track recombineering is illustrated by the simultaneous labelling of CYCLINDEPENDENT KINASE D (CDKD) and CYCLIN H (CYCH) subunits of kinase module of TFIIH general transcription
factor and the CDKD-activating CDKF;1 kinase with green fluorescent protein (GFP) and mCherry (green and red
fluorescent protein) tags, and a PIPL (His18-StrepII-HA) epitope. Functionality of modified CDKF;1 gene constructs
is verified by complementation of corresponding T-DNA insertion mutation. Interaction of CYCH with all three
known CDKD homologues is confirmed by their co-localization and co-immunoprecipitation. Affinity purification
and mass spectrometry analyses of CDKD;2, CYCH, and DNA-replication-coupled HISTONE H3.1 validate their
association with conserved TFIIH subunits and components of CHROMATIN ASSEMBLY FACTOR 1, respectively.
The results document that simple modification of plant gene products with suitable tags by fast-track recombineering is well suited to promote a wide range of protein interaction and proteomics studies
Pathogen effector recognition-dependent association of NRG1 with EDS1 and SAG101 in TNL receptor immunity
Plants utilise intracellular nucleotide-binding, leucine-rich repeat (NLR) immune receptors to detect pathogen effectors and activate local and systemic defence. NRG1 and ADR1 “helper” NLRs (RNLs) cooperate with enhanced disease susceptibility 1 (EDS1), senescence-associated gene 101 (SAG101) and phytoalexin-deficient 4 (PAD4) lipase-like proteins to mediate signalling from TIR domain NLR receptors (TNLs). The mechanism of RNL/EDS1 family protein cooperation is not understood. Here, we present genetic and molecular evidence for exclusive EDS1/SAG101/NRG1 and EDS1/PAD4/ADR1 co-functions in TNL immunity. Using immunoprecipitation and mass spectrometry, we show effector recognition-dependent interaction of NRG1 with EDS1 and SAG101, but not PAD4. An EDS1-SAG101 complex interacts with NRG1, and EDS1-PAD4 with ADR1, in an immune-activated state. NRG1 requires an intact nucleotide-binding P-loop motif, and EDS1 a functional EP domain and its partner SAG101, for induced association and immunity. Thus, two distinct modules (NRG1/EDS1/SAG101 and ADR1/EDS1/PAD4) mediate TNL receptor defence signalling
Solid phase total synthesis of the 3-amino-6-hydroxy-2-piperidone (Ahp) cyclodepsipeptide and protease inhibitor Symplocamide A
The solid phase total synthesis of the marine cyanobacterial Ahp-cyclodepsipeptide Symplocamide A is reported as a model for a general route for the synthesis of tailor-made non-covalent serine protease inhibitors
Development of a solid-phase approach to the natural product class of Ahp-containing cyclodepsipeptides
The 3-amino-6-hydroxy-2-piperidone (Ahp) containing cyclodepsipeptides are an interesting class of natural products that inhibit S1 (trypsin and chymotrypsin-like) serine protease in a reversible, noncovalent manner, turning them into potential chemical tools for protease research. Their systematic use in chemical biology is however hampered by their tedious solution-phase chemical synthesis. To overcome this limitation, we report a solid-phase approach to Ahp cyclodepsipeptides that is based on the use of a maskedglutamic aldehyde moiety as a general Ahp precursor molecule. As a proof-of-concept, we therefore recently reported the solid-phase synthesis of Symplocamide A. Here, we want to give a full account on the development and application of the masked glutamic aldehyde moiety as well as the optimization of the solid-phase synthesis, which allowed the successful synthesis of the natural product Symplocamide A
Ahp cyclodepsipeptides: the Impact of the Ahp residue on the "Canonical Inhibition" of S1 serine proteases
S1 serine proteases are by far the largest and most diverse family of proteases encoded in the human genome. Although recent decades have seen an enormous increase in our knowledge, the biological functions of most of these proteases remain to be elucidated. Chemical inhibitors have proven to be versatile tools for studying the functions of proteases, but this approach is hampered by the limited availability of inhibitor scaffold structures with the potential to allow rapid discovery of selective, noncovalent small-molecule protease inhibitors. The natural product class of Ahp cyclodepsipeptides is an unusual class of small-molecule canonical inhibitors; the incorporation of protease cleavage sequences into their molecular scaffolds enables the design of specific small-molecule inhibitors that simultaneously target the S and S′ subsites of the protease through noncovalent mechanisms. Their synthesis is tedious, however, so in this study we have investigated the relevance of the Ahp moiety for achieving potent inhibition. We found that although the Ahp residue plays an important role in inhibition potency, appropriate replacement with β-hydroxy amino acids results in structurally less complex derivatives that inhibit serine proteases in the low micromolar range
The Adaptation of <i>Botrytis cinerea</i> Extracellular Vesicles Proteome to Surrounding Conditions: Revealing New Tools for Its Infection Process
Extracellular vesicles (EVs) are membranous particles released by different organisms. EVs carry several sets of macromolecules implicated in cell communication. EVs have become a relevant topic in the study of pathogenic fungi due to their relationship with fungal–host interactions. One of the essential research areas in this field is the characterization protein profile of EVs since plant fungal pathogens rely heavily on secreted proteins to invade their hosts. However, EVs of Botrytis cinerea are little known, which is one of the most devastating phytopathogenic fungi. The present study has two main objectives: the characterization of B. cinerea EVs proteome changes under two pathogenic conditions and the description of their potential role during the infective process. All the experimental procedure was conducted in B. cinerea growing in a minimal salt medium supplemented with glucose as a constitutive stage and deproteinized tomato cell walls (TCW) as a virulence inductor. The isolation of EVs was performed by differential centrifugation, filtration, ultrafiltration, and sucrose cushion ultracentrifugation. EVs fractions were visualised by TEM using negative staining. Proteomic analysis of EVs cargo was addressed by LC-MS/MS. The methodology used allowed the correct isolation of B. cinerea EVs and the identification of a high number of EV proteins, including potential EV markers. The isolated EVs displayed differences in morphology under both assayed conditions. GO analysis of EV proteins showed enrichment in cell wall metabolism and proteolysis under TCW. KEGG analysis also showed the difference in EVs function under both conditions, highlighting the presence of potential virulence/pathogenic factors implicated in cell wall metabolism, among others. This work describes the first evidence of EVs protein cargo adaptation in B. cinerea, which seems to play an essential role in its infection process, sharing crucial functions with the conventional secretion pathways
Cavity surface residues of PAD4 and SAG101 contribute to EDS1 dimer signaling specificity in plant immunity
Arabidopsis pathogen effector-triggered immunity (ETI) is controlled by a family of three lipase-like proteins (EDS1, PAD4, and SAG101) and two subfamilies of HET-S/LOB-B (HeLo)-domain “helper” nucleotide-binding/leucine-rich repeats (ADR1s and NRG1s). EDS1-PAD4 dimers cooperate with ADR1s, and EDS1-SAG101 dimers with NRG1s, in two separate defense-promoting modules. EDS1-PAD4-ADR1 and EDS1-SAG101-NRG1 complexes were detected in immune-activated leaf extracts but the molecular determinants for specific complex formation and function remain unknown. EDS1 signaling is mediated by a C-terminal EP domain (EPD) surface surrounding a cavity formed by the heterodimer. Here we investigated whether the EPDs of PAD4 and SAG101 contribute to EDS1 dimer functions. Using a structure-guided approach, we undertook a comprehensive mutational analysis of Arabidopsis PAD4. We identify two conserved residues (Arg314 and Lys380) lining the PAD4 EPD cavity that are essential for EDS1-PAD4–mediated pathogen resistance, but are dispensable for the PAD4-mediated restriction of green peach aphid infestation. Positionally equivalent Met304 and Arg373 at the SAG101 EPD cavity are required for EDS1-SAG101 promotion of ETI-related cell death. In a PAD4 and SAG101 interactome analysis of ETI-activated tissues, PAD4R314A and SAG101M304R EPD variants maintain interaction with EDS1 but lose association, respectively, with helper nucleotide-binding/leucine-rich repeats ADR1-L1 and NRG1.1, and other immune-related proteins. Our data reveal a fundamental contribution of similar but non-identical PAD4 and SAG101 EPD surfaces to specific EDS1 dimer protein interactions and pathogen immunity
Cavity surface residues of PAD4 and SAG101 contribute to EDS1 dimer signaling specificity in plant immunity
Arabidopsis pathogen effector-triggered immunity (ETI) is controlled by a family of three lipase-like proteins (EDS1, PAD4, and SAG101) and two subfamilies of HET-S/LOB-B (HeLo)-domain "helper" nucleotide-binding/leucine-rich repeats (ADR1s and NRG1s). EDS1-PAD4 dimers cooperate with ADR1s, and EDS1-SAG101 dimers with NRG1s, in two separate defense-promoting modules. EDS1-PAD4-ADR1 and EDS1-SAG101-NRG1 complexes were detected in immune-activated leaf extracts but the molecular determinants for specific complex formation and function remain unknown. EDS1 signaling is mediated by a C-terminal EP domain (EPD) surface surrounding a cavity formed by the heterodimer. Here we investigated whether the EPDs of PAD4 and SAG101 contribute to EDS1 dimer functions. Using a structure-guided approach, we undertook a comprehensive mutational analysis of Arabidopsis PAD4. We identify two conserved residues (Arg314 and Lys380) lining the PAD4 EPD cavity that are essential for EDS1-PAD4-mediated pathogen resistance, but are dispensable for the PAD4-mediated restriction of green peach aphid infestation. Positionally equivalent Met304 and Arg373 at the SAG101 EPD cavity are required for EDS1-SAG101 promotion of ETI-related cell death. In a PAD4 and SAG101 interactome analysis of ETI-activated tissues, PAD4 R314A and SAG101 M304R EPD variants maintain interaction with EDS1 but lose association, respectively, with helper nucleotide-binding/leucine-rich repeats ADR1-L1 and NRG1.1, and other immune-related proteins. Our data reveal a fundamental contribution of similar but non-identical PAD4 and SAG101 EPD surfaces to specific EDS1 dimer protein interactions and pathogen immunity