588 research outputs found
Microstructure of severely deformed metals from X-ray line profile analysis
Two essentially different materials, cubic Ti(49.8)Ni(50.2) shape memory alloy and hexagonal AZ91 Mg alloy, were deformed by equal channel angular pressing (ECAP). The microstructure developed as a result of severe plastic deformation was studied by X-ray line profile analysis. The correlation between the microstructure and the mechanical behavior was also investigated. Below 100 degrees C the tensile strength of the Mg alloy increased as a consequence of the increase of the dislocation density owing to ECAP. Above 200 degrees C the strength decreased and the ductility increased as a result of the breakage of the Al(12)Mg(17) precipitates due to ECAP. The analysis of the dislocation contrast factors of Ti(49.8)Ni(50.2) revealed that {110} dislocations with line vector formed during ECAP
Foreground separation using a flexible maximum-entropy algorithm: an application to COBE data
A flexible maximum-entropy component separation algorithm is presented that
accommodates anisotropic noise, incomplete sky-coverage and uncertainties in
the spectral parameters of foregrounds. The capabilities of the method are
determined by first applying it to simulated spherical microwave data sets
emulating the COBE-DMR, COBE-DIRBE and Haslam surveys. Using these simulations
we find that is very difficult to determine unambiguously the spectral
parameters of the galactic components for this data set due to their high level
of noise. Nevertheless, we show that is possible to find a robust CMB
reconstruction, especially at the high galactic latitude. The method is then
applied to these real data sets to obtain reconstructions of the CMB component
and galactic foreground emission over the whole sky. The best reconstructions
are found for values of the spectral parameters: T_d=19 K, alpha_d=2,
beta_ff=-0.19 and beta_syn=-0.8. The CMB map has been recovered with an
estimated statistical error of \sim 22 muK on an angular scale of 7 degrees
outside the galactic cut whereas the low galactic latitude region presents
contamination from the foreground emissions.Comment: 29 pages, 25 figures, version accepted for publication in MNRAS. One
subsection and 6 figures added. Main results unchange
Joint Bayesian component separation and CMB power spectrum estimation
We describe and implement an exact, flexible, and computationally efficient
algorithm for joint component separation and CMB power spectrum estimation,
building on a Gibbs sampling framework. Two essential new features are 1)
conditional sampling of foreground spectral parameters, and 2) joint sampling
of all amplitude-type degrees of freedom (e.g., CMB, foreground pixel
amplitudes, and global template amplitudes) given spectral parameters. Given a
parametric model of the foreground signals, we estimate efficiently and
accurately the exact joint foreground-CMB posterior distribution, and therefore
all marginal distributions such as the CMB power spectrum or foreground
spectral index posteriors. The main limitation of the current implementation is
the requirement of identical beam responses at all frequencies, which restricts
the analysis to the lowest resolution of a given experiment. We outline a
future generalization to multi-resolution observations. To verify the method,
we analyse simple models and compare the results to analytical predictions. We
then analyze a realistic simulation with properties similar to the 3-yr WMAP
data, downgraded to a common resolution of 3 degree FWHM. The results from the
actual 3-yr WMAP temperature analysis are presented in a companion Letter.Comment: 23 pages, 16 figures; version accepted for publication in ApJ -- only
minor changes, all clarifications. More information about the WMAP3 analysis
available at http://www.astro.uio.no/~hke under the Research ta
Intrinsic Optical Transition Energies in Carbon Nanotubes
Intrinsic optical transition energies for isolated and individual single wall
carbon nanotubes grown over trenches are measured using tunable resonant Raman
scattering. Previously measured E22_S optical transitions from nanotubes in
surfactants are blue shifted 70-90 meV with respect to our measurements of
nanotubes in air. This large shift in the exciton energy is attributed to a
larger change of the exciton binding energy than the band-gap renormalization
as the surrounding dielectric constant increases.Comment: Due to a mistake, a different paper was submitted as "revised v2".
This is a re-submission of the origional version in order to correct the
mistak
Tunable Resonant Raman Scattering from Singly Resonant Single Wall Carbon Nanotubes
We perform tunable resonant Raman scattering on 17 semiconducting and 7
metallic singly resonant single wall carbon nanotubes. The measured scattering
cross-section as a function laser energy provides information about a tube's
electronic structure, the lifetime of intermediate states involved in the
scattering process and also energies of zone center optical phonons. Recording
the scattered Raman signal as a function of tube location in the microscope
focal plane allows us to construct two-dimensional spatial maps of singly
resonant tubes. We also describe a spectral nanoscale artifact we have coined
the "nano-slit effect"
Spectroscopic evidence for strong correlations between local superconducting gap and local Altshuler-Aronov density-of-states suppression in ultrathin NbN films
Disorder has different profound effects on superconducting thin films. For a
large variety of materials, increasing disorder reduces electronic screening
which enhances electron-electron repulsion. These fermionic effects lead to a
mechanism described by Finkelstein: when disorder combined to electron-electron
interactions increases, there is a global decrease of the superconducting
energy gap and of the critical temperature , the ratio
/ remaining roughly constant. In addition, in most films an
emergent granularity develops with increasing disorder and results in the
formation of inhomogeneous superconducting puddles. These gap inhomogeneities
are usually accompanied by the development of bosonic features: a pseudogap
develops above the critical temperature and the energy gap
starts decoupling from . Thus the mechanism(s) driving the appearance of
these gap inhomogeneities could result from a complicated interplay between
fermionic and bosonic effects. By studying the local electronic properties of a
NbN film with scanning tunneling spectroscopy (STS) we show that the
inhomogeneous spatial distribution of is locally strongly correlated
to a large depletion in the local density of states (LDOS) around the Fermi
level, associated to the Altshuler-Aronov effect induced by strong electronic
interactions. By modelling quantitatively the measured LDOS suppression, we
show that the latter can be interpreted as local variations of the film
resistivity. This local change in resistivity leads to a local variation of
through a local Finkelstein mechanism. Our analysis furnishes a purely
fermionic scenario explaining quantitatively the emergent superconducting
inhomogeneities, while the precise origin of the latter remained unclear up to
now.Comment: 11 pages, 4 figure
CMB component separation by parameter estimation
We propose a solution to the CMB component separation problem based on
standard parameter estimation techniques. We assume a parametric spectral model
for each signal component, and fit the corresponding parameters pixel by pixel
in a two-stage process. First we fit for the full parameter set (e.g.,
component amplitudes and spectral indices) in low-resolution and high
signal-to-noise ratio maps using MCMC, obtaining both best-fit values for each
parameter, and the associated uncertainty. The goodness-of-fit is evaluated by
a chi^2 statistic. Then we fix all non-linear parameters at their
low-resolution best-fit values, and solve analytically for high-resolution
component amplitude maps. This likelihood approach has many advantages: The
fitted model may be chosen freely, and the method is therefore completely
general; all assumptions are transparent; no restrictions on spatial variations
of foreground properties are imposed; the results may be rigorously monitored
by goodness-of-fit tests; and, most importantly, we obtain reliable error
estimates on all estimated quantities. We apply the method to simulated Planck
and six-year WMAP data based on realistic models, and show that separation at
the muK level is indeed possible in these cases. We also outline how the
foreground uncertainties may be rigorously propagated through to the CMB power
spectrum and cosmological parameters using a Gibbs sampling technique.Comment: 20 pages, 10 figures, submitted to ApJ. For a high-resolution
version, see http://www.astro.uio.no/~hke/docs/eriksen_et_al_fgfit.p
Foreground Subtraction of Cosmic Microwave Background Maps using WI-FIT (Wavelet based hIgh resolution Fitting of Internal Templates)
We present a new approach to foreground removal for Cosmic Microwave
Background (CMB) maps. Rather than relying on prior knowledge about the
foreground components, we first extract the necessary information about them
directly from the microwave sky maps by taking differences of temperature maps
at different frequencies. These difference maps, which we refer to as internal
templates, consist only of linear combinations of galactic foregrounds and
noise, with no CMB component. We obtain the foreground cleaned maps by fitting
these internal templates to, and subsequently subtracting the appropriately
scaled contributions of them from, the CMB dominated channels. The fitting
operation is performed in wavelet space, making the analysis feasible at high
resolution with only a minor loss of precision. Applying this procedure to the
WMAP data, we obtain a power spectrum that matches the spectrum obtained by the
WMAP team at the signal dominated scales. Finally, we have revisited previous
claims about a north-south power asymmetry on large angular scales, and confirm
that these remain unchanged with this completely different approach to
foreground separation. This also holds when fitting the foreground contribution
independently to the northern and southern hemisphere indicating that the
asymmetry is unlikely to have its origin in different foreground properties of
the hemispheres. This conclusion is further strengthened by the lack of any
observed frequency dependence.Comment: Submitted to Ap
- …