2,252 research outputs found

    Reconstructing the Arches I: Constraining the Initial Conditions

    Full text link
    We have performed a series of N-body simulations to model the Arches cluster. Our aim is to find the best fitting model for the Arches cluster by comparing our simulations with observational data and to constrain the parameters for the initial conditions of the cluster. By neglecting the Galactic potential and stellar evolution, we are able to efficiently search through a large parameter space to determine e.g. the IMF, size, and mass of the cluster. We find, that the cluster's observed present-day mass function can be well explained with an initial Salpeter IMF. The lower mass-limit of the IMF cannot be well constrained from our models. In our best models, the total mass and the virial radius of the cluster are initially (5.1 +/- 0.8) 10^4 Msun and 0.76 +/- 0.12 pc, respectively. The concentration parameter of the initial King model is w0 = 3-5.Comment: 12 pages, 14 Figures, revised and accepted for publication in MNRA

    Disks in the Arches cluster -- survival in a starburst environment

    Get PDF
    Deep Keck/NIRC2 HK'L' observations of the Arches cluster near the Galactic center reveal a significant population of near-infrared excess sources. We combine the L'-band excess observations with K'-band proper motions, to confirm cluster membership of excess sources in a starburst cluster for the first time. The robust removal of field contamination provides a reliable disk fraction down to our completeness limit of H=19 mag, or about 5 Msun at the distance of the Arches. Of the 24 identified sources with K'-L' > 2.0 mag, 21 have reliable proper motion measurements, all of which are proper motion members of the Arches cluster. VLT/SINFONI K'-band spectroscopy of three excess sources reveals strong CO bandhead emission, which we interpret as the signature of dense circumstellar disks. The detection of strong disk emission from the Arches stars is surprising in view of the high mass of the B-type main sequence host stars of the disks and the intense starburst environment. We find a disk fraction of 6 +/- 2% among B-type stars in the Arches cluster. A radial increase in the disk fraction from 3 to 10% suggests rapid disk destruction in the immediate vicinity of numerous O-type stars in the cluster core. A comparison between the Arches and other high- and low-mass star-forming regions provides strong indication that disk depletion is significantly more rapid in compact starburst clusters than in moderate star-forming environments.Comment: 51 pages preprint2 style, 22 figures, accepted by Ap

    Non-adiabatic effects in long-pulse mixed-field orientation of a linear polar molecule

    Full text link
    We present a theoretical study of the impact of an electrostatic field combined with non-resonant linearly polarized laser pulses on the rotational dynamics of linear molecules. Within the rigid rotor approximation, we solve the time-dependent Schr\"odinger equation for several field configurations. Using the OCS molecule as prototype, the field-dressed dynamics is analyzed in detail for experimentally accessible static field strengths and laser pulses. Results for directional cosines are presented and compared to the predictions of the adiabatic theory. We demonstrate that for prototypical field configuration used in current mixed-field orientation experiments, the molecular field dynamics is, in general, non-adiabatic, being mandatory a time-dependent description of these systems. We investigate several field regimes identifying the sources of non-adiabatic effects, and provide the field parameters under which the adiabatic dynamics would be achieved.Comment: 16 pages, 16 figures. Submitted to Physical Review

    K-shell x-ray spectroscopy of atomic nitrogen

    Full text link
    Absolute {\it K}-shell photoionization cross sections for atomic nitrogen have been obtained from both experiment and state-of-the-art theoretical techniques. Due to the difficulty of creating a target of neutral atomic nitrogen, no high-resolution {\it K}-edge spectroscopy measurements have been reported for this important atom. Interplay between theory and experiment enabled identification and characterization of the strong 1s1s \rightarrow npnp resonance features throughout the threshold region. An experimental value of 409.64 ±\pm 0.02 eV was determined for the {\it K}-shell binding energy.Comment: 4 pages, 2 graphs, 1 tabl

    Measurements and quasi-quantum modeling of the steric asymmetry and parity propensities in state-to-state rotationally inelastic scattering of NO (2?1/2) with D2.

    Get PDF
    Relative integrated cross sections are measured for spin-orbit-conserving, rotationally inelastic scattering of NO

    High Resolution Spectroscopy of CF3Br by Diode Laser in the Frequency Range 1070–1090 cm−1

    Get PDF
    The IR absorption spectra of gaseous CF3Br expanded in a molecular jet have been recorded with a linewidth of about 0.002 cm−1. The rotational K-structure of the ν1 fundamental has been resolved and the molecular constants ΔB and ΔA have been determined with an accuracy better than 5 x 10−6 cm−1. Spectral features belonging to the ν6- and ν3-hotbands have been identified. For CF3B79r (CF3B81r) improved values of the vibrational origins for the fundamental ν1 = 1084.768(2) cm−1 (1084.520(2) cm−1) and for its hotbands ν3+ν1←ν3 = 1081.709(80) cm−1 (1081.065(40) cm−1) and ν6+ν1←ν6 = 1083.533(4) cm-1 (1083.288(4) cm-1) have been determined

    Parity-dependent rotational rainbows in D2-NO and He-NO differential collision cross sections.

    Get PDF
    The (j′, - ′, ′) dependent differential collision cross sections of D2 with fully state selected (j=12, =12, =-1) NO have been determined at a collision energy of about 550 cm-1. The collisionally excited NO molecules are detected by (1+ 1′) resonance enhanced multiphoton ionization combined using velocity-mapped ion-imaging. The results are compared to He-NO scattering results and tend to be more forward scattered for the same final rotational state. Both for collisions of the atomic He and the molecular D2 with NO, scattering into pairs of rotational states with the same value of n= j′ - ′ 2 yields the same angular dependence of the cross section. This "parity propensity rule" remains present both for spin-orbit conserving and spin-orbit changing transitions. The maxima in the differential cross sections-that reflect rotational rainbows-have been extracted from the D2 -NO and the He-NO differential cross sections. These maxima are found to be distinct for odd and even parity pair number n. Rainbow positions of parity changing transitions (n is odd) occur at larger scattering angles than those of parity conserving transitions (n is even). Parity conserving transitions exhibit-from a classical point of view-a larger effective eccentricity of the shell. No rainbow doubling due to collisions onto either the N-end or the O-end was observed. From a classical point of view the presence of a double rainbow is expected. Rotational excitation of the D2 molecules has not been observed. © 2006 American Institute of Physics
    corecore