174 research outputs found

    Abnormal macrophage response to microbial stimulus in a 43-year-old man with a severe form of atherosclerosis: a case report

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>New evidence indicates infections are emerging as risk factors for atherosclerosis although their specific role in the development and progression of atherosclerosis is still unclear.</p> <p>Case presentation</p> <p>A 43-year-old Caucasian man who had been treated for four years for multiple sclerosis progressively manifested systemic hypertension, polycythemia, peripheral arterial occlusion with intermittent claudication, and persistent headaches. In 2006, an instrumental analysis (magnetic resonance imaging) of our patient revealed widespread fibrocalcific atherosclerotic lesions which accounted for all his current symptoms, including those related to microbial stimulus. Two particular aspects were of interest, namely a lack of conventional cardiovascular risk factors and a negative family history for cardiovascular events. His chemical blood tests all yielded negative findings although a low positive hepatitis C virus-ribonucleic acid titer was detected. The titer had progressively increased and worsening atherosclerosis threatened the life of our patient. Interferon therapy was not appropriate for our patient due to the severe adverse effects observed shortly after its administration.</p> <p>Conclusions</p> <p>The reaction of individual cells to infections may provide an explanation as to why individuals with a similar microbial burden, corrected for the presence of other risk factors, display a different susceptibility to developing or worsening atherosclerosis. The identification of susceptible individuals and the treatment even of silent infections may provide an additional tool against atherosclerosis and its clinical complications. The evaluation of cell susceptibility before and after the correction of risk factors may contribute to the assessment of the efficacy of drug therapy.</p

    Importance of amino acid composition to improve skin collagen protein synthesis rates in UV-irradiated mice

    Get PDF
    Skin collagen metabolism abnormalities induced by ultraviolet (UV) radiation are the major causes of skin photoaging. It has been shown that the one-time exposure of UV irradiation decreases procollagen mRNA expression in dermis and that chronic UV irradiation decreases collagen amounts and induces wrinkle formation. Amino acids are generally known to regulate protein metabolism. Therefore, we investigated the effects of UV irradiation and various orally administered amino acids on skin collagen synthesis rates. Groups of 4–5 male, 8-week-old HR-1 hairless mice were irradiated with UVB (66 mJ/cm2) twice every other day, then fasted for 16 h. The fractional synthesis rate (FSR; %/h) of skin tropocollagen was evaluated by incorporating l-[ring-2H5]-phenylalanine. We confirmed that the FSR of dermal tropocollagen decreased after UVB irradiation. The FSR of dermal tropocollagen was measured 30 min after a single oral administration of amino acids (1 g/kg) to groups of 5–16 UVB-irradiated mice. Branched-chain amino acids (BCAA, 1.34 ± 0.32), arginine (Arg, 1.66 ± 0.39), glutamine (Gln, 1.75 ± 0.60), and proline (Pro, 1.48 ± 0.26) did not increase the FSR of skin tropocollagen compared with distilled water, which was used as a control (1.56 ± 0.30). However, essential amino acids mixtures (BCAA + Arg + Gln, BCAA + Gln, and BCAA + Pro) significantly increased the FSR (2.07 ± 0.58, 2.04 ± 0.54, 2.01 ± 0.50 and 2.07 ± 0.59, respectively). This result suggests that combinations of BCAA and glutamine or proline are important for restoring dermal collagen protein synthesis impaired by UV irradiation

    Comparison of methods for the detection of biofilm production in coagulase-negative staphylococci

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The ability of biofilm formation seems to play an essential role in the virulence of coagulase-negative staphylococci (CNS). The most clearly characterized component of staphylococcal biofilms is the polysaccharide intercellular adhesin (PIA) encoded by the <it>icaADBC </it>operon. Biofilm production was studied in 80 coagulase-negative staphylococci (CNS) strains isolated from clinical specimens of newborns with infection hospitalized at the Neonatal Unit of the University Hospital, Faculty of Medicine of Botucatu, and in 20 isolates obtained from the nares of healthy individuals without signs of infection. The objective was to compare three phenotypic methods with the detection of the <it>icaA</it>, <it>icaD </it>and <it>icaC </it>genes by PCR.</p> <p>Findings</p> <p>Among the 100 CNS isolates studied, 82% tested positive by PCR, 82% by the tube test, 81% by the TCP assay, and 73% by the CRA method. Using PCR as a reference, the tube test showed the best correlation with detection of the <it>ica </it>genes, presenting high sensitivity and specificity.</p> <p>Conclusions</p> <p>The tube adherence test can be indicated for the routine detection of biofilm production in CNS because of its easy application and low cost and because it guarantees reliable results with excellent sensitivity and specificity.</p

    Whole-Exome Sequencing and Homozygosity Analysis Implicate Depolarization-Regulated Neuronal Genes in Autism

    Get PDF
    Although autism has a clear genetic component, the high genetic heterogeneity of the disorder has been a challenge for the identification of causative genes. We used homozygosity analysis to identify probands from nonconsanguineous families that showed evidence of distant shared ancestry, suggesting potentially recessive mutations. Whole-exome sequencing of 16 probands revealed validated homozygous, potentially pathogenic recessive mutations that segregated perfectly with disease in 4/16 families. The candidate genes (UBE3B, CLTCL1, NCKAP5L, ZNF18) encode proteins involved in proteolysis, GTPase-mediated signaling, cytoskeletal organization, and other pathways. Furthermore, neuronal depolarization regulated the transcription of these genes, suggesting potential activity-dependent roles in neurons. We present a multidimensional strategy for filtering whole-exome sequence data to find candidate recessive mutations in autism, which may have broader applicability to other complex, heterogeneous disorders

    Constitutive Activation of PrfA Tilts the Balance of Listeria monocytogenes Fitness Towards Life within the Host versus Environmental Survival

    Get PDF
    PrfA is a key regulator of Listeria monocytogenes pathogenesis and induces the expression of multiple virulence factors within the infected host. PrfA is post-translationally regulated such that the protein becomes activated upon bacterial entry into the cell cytosol. The signal that triggers PrfA activation remains unknown, however mutations have been identified (prfA* mutations) that lock the protein into a high activity state. In this report we examine the consequences of constitutive PrfA activation on L. monocytogenes fitness both in vitro and in vivo. Whereas prfA* mutants were hyper-virulent during animal infection, the mutants were compromised for fitness in broth culture and under conditions of stress. Broth culture prfA*-associated fitness defects were alleviated when glycerol was provided as the principal carbon source; under these conditions prfA* mutants exhibited a competitive advantage over wild type strains. Glycerol and other three carbon sugars have been reported to serve as primary carbon sources for L. monocytogenes during cytosolic growth, thus prfA* mutants are metabolically-primed for replication within eukaryotic cells. These results indicate the critical need for environment-appropriate regulation of PrfA activity to enable L. monocytogenes to optimize bacterial fitness inside and outside of host cells

    Learning From History About Reducing Infant Mortality: Contrasting the Centrality of Structural Interventions to Early 20th‐Century Successes in the United States to Their Neglect in Current Global Initiatives

    Get PDF

    Evidence-based guidelines for use of probiotics in preterm neonates

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Current evidence indicates that probiotic supplementation significantly reduces all-cause mortality and definite necrotising enterocolitis without significant adverse effects in preterm neonates. As the debate about the pros and cons of routine probiotic supplementation continues, many institutions are satisfied with the current evidence and wish to use probiotics routinely. Because of the lack of detail on many practical aspects of probiotic supplementation, clinician-friendly guidelines are urgently needed to optimise use of probiotics in preterm neonates.</p> <p>Aim</p> <p>To develop evidence-based guidelines for probiotic supplementation in preterm neonates.</p> <p>Methods</p> <p>To develop core guidelines on use of probiotics, including strain selection, dose and duration of supplementation, we primarily used the data from our recent updated systematic review of randomised controlled trials. For equally important issues including strain identification, monitoring for adverse effects, product format, storage and transport, and regulatory hurdles, a comprehensive literature search, covering the period 1966-2010 without restriction on the study design, was conducted, using the databases PubMed and EMBASE, and the proceedings of scientific conferences; these data were used in our updated systematic review.</p> <p>Results</p> <p>In this review, we present guidelines, including level of evidence, for the practical aspects (for example, strain selection, dose, duration, clinical and laboratory surveillance) of probiotic supplementation, and for dealing with non-clinical but important issues (for example, regulatory requirements, product format). Evidence was inadequate in some areas, and these should be a target for further research.</p> <p>Conclusion</p> <p>We hope that these evidence-based guidelines will help to optimise the use of probiotics in preterm neonates. Continued research is essential to provide answers to the current gaps in knowledge about probiotics.</p

    Transcriptomic analysis of the temporal host response to skin infestation with the ectoparasitic mite Psoroptes ovis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Infestation of ovine skin with the ectoparasitic mite <it>Psoroptes ovis </it>results in a rapid cutaneous immune response, leading to the crusted skin lesions characteristic of sheep scab. Little is known regarding the mechanisms by which such a profound inflammatory response is instigated and to identify novel vaccine and drug targets a better understanding of the host-parasite relationship is essential. The main objective of this study was to perform a combined network and pathway analysis of the <it>in vivo </it>skin response to infestation with <it>P. ovis </it>to gain a clearer understanding of the mechanisms and signalling pathways involved.</p> <p>Results</p> <p>Infestation with <it>P. </it>ovis resulted in differential expression of 1,552 genes over a 24 hour time course. Clustering by peak gene expression enabled classification of genes into temporally related groupings. Network and pathway analysis of clusters identified key signalling pathways involved in the host response to infestation. The analysis implicated a number of genes with roles in allergy and inflammation, including pro-inflammatory cytokines (<it>IL1A, IL1B, IL6, IL8 </it>and <it>TNF</it>) and factors involved in immune cell activation and recruitment (<it>SELE, SELL, SELP, ICAM1, CSF2, CSF3, CCL2 </it>and <it>CXCL2</it>). The analysis also highlighted the influence of the transcription factors NF-kB and AP-1 in the early pro-inflammatory response, and demonstrated a bias towards a Th2 type immune response.</p> <p>Conclusions</p> <p>This study has provided novel insights into the signalling mechanisms leading to the development of a pro-inflammatory response in sheep scab, whilst providing crucial information regarding the nature of mite factors that may trigger this response. It has enabled the elucidation of the temporal patterns by which the immune system is regulated following exposure to <it>P. ovis</it>, providing novel insights into the mechanisms underlying lesion development. This study has improved our existing knowledge of the host response to <it>P. ovis</it>, including the identification of key parallels between sheep scab and other inflammatory skin disorders and the identification of potential targets for disease control.</p

    Iron Behaving Badly: Inappropriate Iron Chelation as a Major Contributor to the Aetiology of Vascular and Other Progressive Inflammatory and Degenerative Diseases

    Get PDF
    The production of peroxide and superoxide is an inevitable consequence of aerobic metabolism, and while these particular "reactive oxygen species" (ROSs) can exhibit a number of biological effects, they are not of themselves excessively reactive and thus they are not especially damaging at physiological concentrations. However, their reactions with poorly liganded iron species can lead to the catalytic production of the very reactive and dangerous hydroxyl radical, which is exceptionally damaging, and a major cause of chronic inflammation. We review the considerable and wide-ranging evidence for the involvement of this combination of (su)peroxide and poorly liganded iron in a large number of physiological and indeed pathological processes and inflammatory disorders, especially those involving the progressive degradation of cellular and organismal performance. These diseases share a great many similarities and thus might be considered to have a common cause (i.e. iron-catalysed free radical and especially hydroxyl radical generation). The studies reviewed include those focused on a series of cardiovascular, metabolic and neurological diseases, where iron can be found at the sites of plaques and lesions, as well as studies showing the significance of iron to aging and longevity. The effective chelation of iron by natural or synthetic ligands is thus of major physiological (and potentially therapeutic) importance. As systems properties, we need to recognise that physiological observables have multiple molecular causes, and studying them in isolation leads to inconsistent patterns of apparent causality when it is the simultaneous combination of multiple factors that is responsible. This explains, for instance, the decidedly mixed effects of antioxidants that have been observed, etc...Comment: 159 pages, including 9 Figs and 2184 reference
    corecore