155 research outputs found

    Impaired performance of alpha7 nicotinic receptor knockout mice in the five-choice serial reaction time task

    Get PDF
    RATIONALE: Nicotinic receptors have been implicated in attentional performance. Nicotine can improve attention in animals and humans, but knowledge about relevant receptor subtypes is very limited. OBJECTIVES: The aim was to examine the role of α7 receptors in attentional performance of mice and in effects of nicotine. MATERIALS AND METHODS: Mice with targeted deletion of the gene coding for the α7 subunit of nicotinic receptors and wild-type controls were trained on a five-choice serial reaction time task with food reinforcers presented under varying parametric conditions. Nicotine was administered in a range of doses (0.001–1.0 mg/kg sc), including those reported to enhance attentional performance. RESULTS: Initially the α7(−/−) (knockout) mice responded less accurately and made more anticipatory responses. After task parameters were altered so that the time allowed for responding was reduced and anticipatory (impulsive) responses were punished by a time-out, the pattern of performance deficits changed; there were increased omission errors in α7(−/−) mice but normal levels of accuracy and anticipatory responding. Nicotine did not improve any measure of performance, either with the original training parameters or after retraining; the largest dose used (1.0 mg/kg) produced a general impairment of responding in α7(−/−) and wild-type mice. CONCLUSIONS: α7 nicotinic receptor knockout mice are impaired in performance of the 5-CSRTT, suggesting a possible role for α7 receptors in attentional processing. However, identification of a protocol for assessing attention-enhancing effects of nicotine in mice may require further modifications of test procedures or the use of different strains of animal

    Common Variants at 10 Genomic Loci Influence Hemoglobin A(1C) Levels via Glycemic and Nonglycemic Pathways

    Get PDF
    OBJECTIVE Glycated hemoglobin (HbA1c), used to monitor and diagnose diabetes, is influenced by average glycemia over a 2- to 3-month period. Genetic factors affecting expression, turnover, and abnormal glycation of hemoglobin could also be associated with increased levels of HbA1c. We aimed to identify such genetic factors and investigate the extent to which they influence diabetes classification based on HbA1c levels. RESEARCH DESIGN AND METHODS We studied associations with HbA1c in up to 46,368 nondiabetic adults of European descent from 23 genome-wide association studies (GWAS) and 8 cohorts with de novo genotyped single nucleotide polymorphisms (SNPs). We combined studies using inverse-variance meta-analysis and tested mediation by glycemia using conditional analyses. We estimated the global effect of HbA1c loci using a multilocus risk score, and used net reclassification to estimate genetic effects on diabetes screening. RESULTS Ten loci reached genome-wide significant association with HbA1c, including six new loci near FN3K (lead SNP/P value, rs1046896/P = 1.6 × 10−26), HFE (rs1800562/P = 2.6 × 10−20), TMPRSS6 (rs855791/P = 2.7 × 10−14), ANK1 (rs4737009/P = 6.1 × 10−12), SPTA1 (rs2779116/P = 2.8 × 10−9) and ATP11A/TUBGCP3 (rs7998202/P = 5.2 × 10−9), and four known HbA1c loci: HK1 (rs16926246/P = 3.1 × 10−54), MTNR1B (rs1387153/P = 4.0 × 10−11), GCK (rs1799884/P = 1.5 × 10−20) and G6PC2/ABCB11 (rs552976/P = 8.2 × 10−18). We show that associations with HbA1c are partly a function of hyperglycemia associated with 3 of the 10 loci (GCK, G6PC2 and MTNR1B). The seven nonglycemic loci accounted for a 0.19 (% HbA1c) difference between the extreme 10% tails of the risk score, and would reclassify ∼2% of a general white population screened for diabetes with HbA1c. CONCLUSIONS GWAS identified 10 genetic loci reproducibly associated with HbA1c. Six are novel and seven map to loci where rarer variants cause hereditary anemias and iron storage disorders. Common variants at these loci likely influence HbA1c levels via erythrocyte biology, and confer a small but detectable reclassification of diabetes diagnosis by HbA1c

    Altering the Motivational Function of Nicotine through Conditioning Processes

    Get PDF
    The collection of chapters in this 55th Nebraska Symposium on Motivation Volume clearly highlights that effective strategies for reducing compulsive tobacco use will require a multifaceted approach in which genetic, neurobiological, individual, and cultural factors are considered. It is difficult, if not impossible, to predict where the next important breakthrough will come from (Bevins & Bardo, 2004; Dethier, 1966; Laidler, 1998). Accordingly, further research that extends and challenges current theory and practice at each of these levels of analysis is needed. The continuing focus of our research program, and the topic of the present chapter, is on the role of Pavlovian conditioning processes involving nicotine. Theoretical and empirical approaches to nicotine dependence that include Pavlovian conditioning processes have lead to important advances in our understanding and treatment of chronic tobacco use (e.g., see Rose, Chapter 8 and Tiffany, Warthen, & Goedecker, Chapter 10 in current Volume). These approaches conceptualize the drug as an unconditioned stimulus (US) or reinforcer. That is, the pharmacological effects of the drug (e.g., reward, analgesia, psychomotor stimulation) enter into an association with stimuli that reliably co-occur with these effects (e.g., paraphernalia, situational cues). Later exposure to these conditioned stimuli (CSs) can evoke conditioned responses (CRs) that increase the chances an individual will seek drug. More recently, we have suggested that the interoceptive stimulus effects of nicotine might also serve as a CS for other appetitive non-drug outcomes (i.e., USs) and/or a stimulus that occasions whether other CS-US associations will or will not occur (i.e., an occasion setter or facilitator; see Bevins & Palmatier, 2004). We have further suggested that such an associative learning history could impact the tenacity of nicotine addiction—e.g., shorten the time between experimentation and dependence, increase the difficulty of quitting, make sustaining abstinence more difficult, etc. At the current time these suggestions are speculative. With this in mind, the present chapter will review the research in this area, as well as highlight some of its historical precursors and suggest some possible future directions for research. In doing so, hopefully the reader will gain an appreciation for how this approach might lead to further insight into how Pavlovian conditioning processes can alter the motivational function of nicotine in a manner that contributes to chronic tobacco use

    Work factors and smoking cessation in nurses' aides: a prospective cohort study

    Get PDF
    BACKGROUND: The prevalence of smoking in nursing personnel remains high. The aim of this study was to identify work factors that predict smoking cessation among nurses' aides. METHODS: Of 2720 randomly selected, Norwegian nurses' aides, who were smoking at least one cigarette per day when they completed a questionnaire in 1999, 2275 (83.6 %) completed a second questionnaire 15 months later. A wide spectrum of work factors were assessed at baseline. Respondents who reported smoking 0 cigarettes per day at follow-up were considered having stopped smoking. The odds ratios and 95 % confidence intervals of stopping smoking were derived from logistic regression models. RESULTS: Compared with working 1–9 hours per week, working 19–36 hours per week (odds ratio (OR) = 0.35; 95 % confidence interval (CI) = 0.13 – 0.91), and working more than 36 hours per week (i.e. more than full-time job) (OR = 0.27; CI = 0.09 – 0.78) were associated with reduced odds of smoking cessation, after adjustments for daily consumption of cigarettes at baseline, age, gender, marital status, and having preschool children. Adjusting also for chronic health problems gave similar results. CONCLUSION: There seems to be a negative association between hours of work per week and the odds of smoking cessation in nurses' aides. It is important that health institutions offer workplace-based services with documented effects on nicotine dependence, such as smoking cessation courses, so that healthcare workers who want to stop smoking, especially those with long working hours, do not have to travel to the programme or to dedicate their leisure time to it

    Nicotinic Receptors Underlying Nicotine Dependence: Evidence from Transgenic Mouse Models.

    Get PDF
    Nicotine underlies the reinforcing properties of tobacco cigarettes and e-cigarettes. After inhalation and absorption, nicotine binds to various nicotinic acetylcholine receptor (nAChR) subtypes localized on the pre- and postsynaptic membranes of cells, which subsequently leads to the modulation of cellular function and neurotransmitter signaling. In this chapter, we begin by briefly reviewing the current understanding of nicotine's actions on nAChRs and highlight considerations regarding nAChR subtype localization and pharmacodynamics. Thereafter, we discuss the seminal discoveries derived from genetically modified mouse models, which have greatly contributed to our understanding of nicotine's effects on the reward-related mesolimbic pathway and the aversion-related habenulo-interpeduncular pathway. Thereafter, emerging areas of research focusing on modulation of nAChR expression and/or function are considered. Taken together, these discoveries have provided a foundational understanding of various genetic, neurobiological, and behavioral factors underlying the motivation to use nicotine and related dependence processes, which are thereby advancing drug discovery efforts to promote long-term abstinence

    Loss of function mutations in GEMIN5 cause a neurodevelopmental disorder.

    Get PDF
    GEMIN5, an RNA-binding protein is essential for assembly of the survival motor neuron (SMN) protein complex and facilitates the formation of small nuclear ribonucleoproteins (snRNPs), the building blocks of spliceosomes. Here, we have identified 30 affected individuals from 22 unrelated families presenting with developmental delay, hypotonia, and cerebellar ataxia harboring biallelic variants in the GEMIN5 gene. Mutations in GEMIN5 perturb the subcellular distribution, stability, and expression of GEMIN5 protein and its interacting partners in patient iPSC-derived neurons, suggesting a potential loss-of-function mechanism. GEMIN5 mutations result in disruption of snRNP complex assembly formation in patient iPSC neurons. Furthermore, knock down of rigor mortis, the fly homolog of human GEMIN5, leads to developmental defects, motor dysfunction, and a reduced lifespan. Interestingly, we observed that GEMIN5 variants disrupt a distinct set of transcripts and pathways as compared to SMA patient neurons, suggesting different molecular pathomechanisms. These findings collectively provide evidence that pathogenic variants in GEMIN5 perturb physiological functions and result in a neurodevelopmental delay and ataxia syndrome

    Nicotine dependence: Concepts from animal experiments

    No full text
    • …
    corecore