9 research outputs found

    Functional Analysis of the Neurofibromatosis Type 2 Protein by Means of Disease-Causing Point Mutations

    Get PDF
    Despite intense study of the neurofibromatosis type 2 (NF2) tumor-suppressor protein merlin, the biological properties and tumor-suppressor functions of merlin are still largely unknown. In this study, we examined the molecular activities of NF2-causing mutant merlin proteins in transfected mammalian cells, to elucidate the merlin properties that are critical for tumor-suppressor function. Most important, we found that 80% of the merlin mutants studied significantly altered cell adhesion, causing cells to detach from the substratum. This finding implies a function for merlin in regulating cell-matrix attachment, and changes in cell adhesion caused by mutant protein expression may be an initial step in the pathogenesis of NF2. In addition, five different mutations in merlin caused a significant increase in detergent solubility of merlin compared to wild type, indicating a decreased ability to interact with the cytoskeleton. Although not correlated to the cell-adhesion phenotype, four missense mutations decreased the binding of merlin to the ERM-interacting protein EBP-50, implicating this interaction in merlin inhibition of cell growth. Last, we found that some NF2 point mutations in merlin most closely resembled gain-of-function alleles in their cellular phenotype, which suggests that mutant NF2 alleles may not always act in a loss-of-function manner, as had been assumed, but may include a spectrum of allelic types with different phenotypic effects on the function of the protein. In aggregate, these cellular phenotypes provide a useful assay for identifying the functional domains and molecular partners necessary for merlin tumor-suppressor activity

    Variation in _PNPLA3_ is associated with outcomes in alcoholic liver disease

    Get PDF
    Two recent genome-wide association studies have described associations of SNP variants in _PNPLA3_ with nonalcoholic fatty liver and plasma liver enzyme levels in population based cohorts. We investigated the contributions of these variants to clinical outcomes in Mestizo subjects with a history of excessive alcohol consumption. We show that non-synonymous variant rs738409[G] (I148M) in _PNPLA3_ is strongly associated with alcoholic liver disease and progression to alcoholic cirrhosis (unadjusted OR = 2.25, P = 1.7x10^-10^; ancestry-adjusted OR = 1.79, P = 1.9x10^-5^)

    Clinical validity assessment of a breast cancer risk model combining genetic and clinical information

    Get PDF
    _Background:_ The extent to which common genetic variation can assist in breast cancer (BCa) risk assessment is unclear. We assessed the addition of risk information from a panel of BCa-associated single nucleotide polymorphisms (SNPs) on risk stratification offered by the Gail Model.

_Methods:_ We selected 7 validated SNPs from the literature and genotyped them among white women in a nested case-control study within the Women’s Health Initiative Clinical Trial. To model SNP risk, previously published odds ratios were combined multiplicatively. To produce a combined clinical/genetic risk, Gail Model risk estimates were multiplied by combined SNP odds ratios. We assessed classification performance using reclassification tables and receiver operating characteristic (ROC) curves. 

_Results:_ The SNP risk score was well calibrated and nearly independent of Gail risk, and the combined predictor was more predictive than either Gail risk or SNP risk alone. In ROC curve analysis, the combined score had an area under the curve (AUC) of 0.594 compared to 0.557 for Gail risk alone. For reclassification with 5-year risk thresholds at 1.5% and 2%, the net reclassification index (NRI) was 0.085 (Z = 4.3, P = 1.0×10^-5^). Focusing on women with Gail 5-year risk of 1.5-2% results in an NRI of 0.195 (Z = 3.8, P = 8.6×10^−5^).

_Conclusions:_ Combining clinical risk factors and validated common genetic risk factors results in improvement in classification of BCa risks in white, postmenopausal women. This may have implications for informing primary prevention and/or screening strategies. Future research should assess the clinical utility of such strategies.
&#xa

    Evolutionarily conserved sequences on human chromosome 21

    Get PDF
    Comparison of human sequences with the DNA of other mammals is an excellent means of identifying functional elements in the human genome. Here we describe the utility of high-density oligonucleotide arrays as a rapid approach for comparing human sequences with the DNA of multiple species whose sequences are not presently available. High-density arrays representing approximately 22.5 Mb of nonrepetitive human chromosome 21 sequence were synthesized and then hybridized with mouse and dog DNA to identify sequences conserved between humans and mice (human-mouse elements) and between humans and dogs (human-dog elements). Our data show that sequence comparison of multiple species provides a powerful empiric method for identifying actively conserved elements in the human genome. A large fraction of these evolutionarily conserved elements are present in regions on chromosome 21 that do not encode known genes

    Evolutionarily conserved sequences on human chromosome 21

    No full text
    Comparison of human sequences with the DNA of other mammals is an excellent means of identifying functional elements in the human genome. Here we describe the utility of high-density oligonucleotide arrays as a rapid approach for comparing human sequences with the DNA of multiple species whose sequences are not presently available. High-density arrays representing approximately 22.5 Mb of nonrepetitive human chromosome 21 sequence were synthesized and then hybridized with mouse and dog DNA to identify sequences conserved between humans and mice (human-mouse elements) and between humans and dogs (human-dog elements). Our data show that sequence comparison of multiple species provides a powerful empiric method for identifying actively conserved elements in the human genome. A large fraction of these evolutionarily conserved elements are present in regions on chromosome 21 that do not encode known genes

    A Genomewide Association Study of Skin Pigmentation in a South Asian Population

    Get PDF
    We have conducted a multistage genomewide association study, using 1,620,742 single-nucleotide polymorphisms to systematically investigate the genetic factors influencing intrinsic skin pigmentation in a population of South Asian descent. Polymorphisms in three genesβ€”SLC24A5, TYR, and SLC45A2β€”yielded highly significant replicated associations with skin-reflectance measurements, an indirect measure of melanin content in the skin. The associations detected in these three genes, in an additive manner, collectively account for a large fraction of the natural variation of skin pigmentation in a South Asian population. Our study is the first to interrogate polymorphisms across the genome, to find genetic determinants of the natural variation of skin pigmentation within a human population
    corecore