64 research outputs found

    The education of employees as a motivation factor in the management of clinical center of Serbia

    Get PDF
    © 2020, University of Kragujevac, Faculty of Science. All rights reserved. With more than seven thousand employees, KCS is the largest provider of health services in Serbia and one of the largest in Europe, which has more than one million patients per year. The aim of the research is to determine the assessment of employee satisfaction by various factors of motivation, various education programs at the Clinical Center of Serbia, which to some extent contribute to motivation in the workplace. This cross-sectional randomized descriptive study was performed from April 1st to 30th 2016, and included 151 health care professionals in Clinical Center of Serbia. Study included employees both gender and various years old, with different qualificantion and formal education. The anonymous survey about motivation of emplyoeers covered a total of 15 questions with responses (questions of closed type). Based on our results, we can conclude that despite subjectivism attributed to the survey as a method of research, in this case, we got a result that fairly objectively shows the situation in the Clinical Center of Serbia. From all of the above, we can conclude that the organizational culture is not weak in the Clinical Center of Serbia, but certainly it is necessary to work on strengthening its strength, which can be connected with the insufficient development of organizational culture as a scientific discipline in the academic community in Serbia

    Bulk synthesis of stoichiometric/meteoritic troilite (FeS) by high-temperature pyrite decomposition and pyrrhotite melting

    Get PDF
    Stoichiometric troilite (FeS) is a common phase in differentiated and undifferentiated meteorites. It is the endmember of the iron sulfide system. Troilite is important for investigating shock metamorphism in meteorites and studying spectral properties and space weathering of planetary bodies. Thus, obtaining coarse-grained meteoritic troilite in quantities is beneficial for these fields. The previous synthesis of troilite was achieved by pyrite or pyrrhotite heating treatments or chemical syntheses. However, most of these works lacked a visual characterization of the step by step process and the final product, the production of large quantities, and they were not readily advertised to planetary scientists or the meteoritical research community. Here, we illustrate a two-step heat treatment of pyrite to synthesize troilite. Pyrite powder was decomposed to pyrrhotite at 1023-1073 K for 4-6 h in Ar; the run product was then retrieved and reheated for 1 h at 1498-1598 K in N-2 (gas). The minerals were analyzed with a scanning electron microscope, X-ray diffraction (XRD) at room temperature, and in situ high-temperature XRD. The primary observation of synthesis from pyrrhotite to troilite is the shift of a major diffraction peak from similar to 43.2 degrees 2 theta to similar to 43.8 degrees 2 theta. Troilite spectra matched an XRD analysis of natural meteoritic troilite. Slight contamination of Fe was observed during cooling to troilite, and alumina crucibles locally reacted with troilite. The habitus and size of troilite crystals allowed us to store it as large grains rather than powder; 27 g of pyrite yielded 17 g of stochiometric troilite.Peer reviewe

    A shock recovery experiment and its implications for Mercury's surface : The effect of high pressure on porous olivine powder as a regolith analog

    Get PDF
    We conducted classic dynamic high - pressure experiments on porous San Carlos (SC) olivine powder to examine if and how different shock stages modify corresponding reflectance mid – infrared (MIR) spectra. Microscopic investigation of the thin sections produced of our shocked samples indicates local peak pressures of >60 GPa along with all lower grade shock stages. Spectral analyses of optically identified shock areas were documented and compared in terms of Christiansen Feature (CF) and the position of olivine – diagnostic Reststrahlenbands (RBs). We found that one RB (fundamental vibrations of the orthosilicate - ion) of olivine occurring at 980 cm−1 (corresponding to ≈ 10.2 μm) shows the least energetic shift in the investigated MIR spectra and could therefore serve as a proxy for the presence of olivine in remote sensing application. Furthermore, a peak located at ≈ 1060 cm−1 (≈ 9.4 μm) shows a significant intensity change probably related to the degree of shock exposure or grain orientation effects, as we observe a decline in intensity of this band from our averaged reference olivine spectra of our IRIS database (diffuse reflectance measurement) down to spectra of grains showing mosaicism and recrystallized areas. We also report the presence of a weak band in some of the olivine spectra located at ≈ 1100 cm−1 (9.1 μm) that has an influence on the position of the CF when spectral data of olivine are averaged.Peer reviewe

    Rationale for BepiColombo Studies of Mercury's Surface and Composition

    Get PDF
    BepiColombo has a larger and in many ways more capable suite of instruments relevant for determination of the topographic, physical, chemical and mineralogical properties of Mercury's surface than the suite carried by NASA's MESSENGER spacecraft. Moreover, BepiColombo's data rate is substantially higher. This equips it to confirm, elaborate upon, and go beyond many of MESSENGER's remarkable achievements. Furthermore, the geometry of BepiColombo's orbital science campaign, beginning in 2026, will enable it to make uniformly resolved observations of both northern and southern hemispheres. This will offer more detailed and complete imaging and topographic mapping, element mapping with better sensitivity and improved spatial resolution, and totally new mineralogical mapping. We discuss MESSENGER data in the context of preparing for BepiColombo, and describe the contributions that we expect BepiColombo to make towards increased knowledge and understanding of Mercury's surface and its composition. Much current work, including analysis of analogue materials, is directed towards better preparing ourselves to understand what BepiColombo might reveal. Some of MESSENGER's more remarkable observations were obtained under unique or extreme conditions. BepiColombo should be able to confirm the validity of these observations and reveal the extent to which they are representative of the planet as a whole. It will also make new observations to clarify geological processes governing and reflecting crustal origin and evolution. We anticipate that the insights gained into Mercury's geological history and its current space weathering environment will enable us to better understand the relationships of surface chemistry, morphologies and structures with the composition of crustal types, including the nature and mobility of volatile species. This will enable estimation of the composition of the mantle from which the crust was derived, and lead to tighter constraints on models for Mercury's origin including the nature and original heliocentric distance of the material from which it formed.Peer reviewe

    Thermal Infrared Spectroscopy of Igneous Rocks at Simulated Mercury's Surface Environment

    Get PDF
    Recent findings by the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft, corroborated by petrologic modeling, revealed the surface composition of Mercury as mainly constituted by low-Fe and Mgrich basalts [1, 2]. This interpretation dismisses the previously assumed widespread presence of more felsic materials - as on the Moon’s surface - leaving open the question of the crust petrogenesis of Mercury. Assessing the presence of a differentiated crust on the surface of Mercury is among the core objectives of the upcoming ESA/JAXA BepiColombo mission to Mercury [3]. The ESA Mercury Planetary Orbiter will carry the Mercury Radiometer and Thermal Imaging Spectrometer (MERTIS) covering the spectral range 7- 14 µm to map the surface mineralogy of the planet at 500 m spatial resolution. The interpretation of spectra collected along a wide range of daily surface temperatures is complicated by the shift of the location of the band minima depending on the temperature [4, 5]. In addition, the simultaneous presence of different minerals, each one with its own characteristic thermal expansion coefficient, results in a more difficult interpretation of the spectra. In this work we examine the thermal infrared (TIR) spectral variations of linear mixtures of plagioclase and pyroxenes that most likely could be present in the differentiated igneous crust of Mercury, in addition to the T-dependent spectral variations of the single constituents. Furthermore we show how two different thermal expansion coefficients combined in the same sample reveal in the resulting thermal infrared spectrum. To this aim we measure high-T emissivity - up to 450° C - of synthetic and natural compositions (e.g., anorthosite, gabbro, norite) and their component
    • …
    corecore