6,887 research outputs found
Polaronic signatures and spectral properties of graphene antidot lattices
We explore the consequences of electron-phonon (e-ph) coupling in graphene
antidot lattices (graphene nanomeshes), i.e., triangular superlattices of
circular holes (antidots) in a graphene sheet. They display a direct band gap
whose magnitude can be controlled via the antidot size and density. The
relevant coupling mechanism in these semiconducting counterparts of graphene is
the modulation of the nearest-neighbor electronic hopping integrals due to
lattice distortions (Peierls-type e-ph coupling). We compute the full momentum
dependence of the e-ph vertex functions for a number of representative antidot
lattices. Based on the latter, we discuss the origins of the previously found
large conduction-band quasiparticle spectral weight due to e-ph coupling. In
addition, we study the nonzero-momentum quasiparticle properties with the aid
of the self-consistent Born approximation, yielding results that can be
compared with future angle-resolved photoemission spectroscopy measurements.
Our principal finding is a significant e-ph mass enhancement, an indication of
polaronic behavior. This can be ascribed to the peculiar momentum dependence of
the e-ph interaction in these narrow-band systems, which favors small phonon
momentum scattering. We also discuss implications of our study for recently
fabricated large-period graphene antidot lattices.Comment: published versio
Economic feasibility of second generation ethanol with and without indirect greenhouse gas reduction benefits : a simulation for Brazil
The aim of this study is to determine the economic feasibility of second generation ethanol from sugar cane, whereby traditional ethanol production is combined with the use of lignocellulosic biomass for ethanol production. By applying cost-benefit analysis, this study evaluated the viability of the second generation ethanol technology as an alternative to conventional sugarcaneto- ethanol, both in terms of processing technology, and of land use impacts. Furthermore, an attempt is made to analyze impacts on CO2 mitigation and land use in economic. The research results indicate that: i) from an economic point of view, the first generation plant is clearly preferable. With IRR of 18.7%, Minimum selling price of US 213.0 million, first generation ethanol production from sugar cane has a large economic advantage compared to the second generation plant (IRR of 13.5%, Minimum selling price of US 78.5 million). ii) from an environmental point of view, a second generation biofuel that makes use of lignocellulosic biomass plant is clearly preferable. The second generation plant uses 49.6% less land and avoids a CO2 debt average of 942,282 ton per year throughout the life of the project. iii) Productivity gains improve profitability (IRR) and reduce biofuel prices (Minimum selling prices). Increasing the yearlt Ethanol and sugar cane productivity’s growth rate from 0.5% to 4.0% leads to a range of IRR from 17.5% to 21.5%, and of price from 0.29 US/l for first generation plant, and from 13.2% to 14.2% and of price from 0.39 US/l for second generation plant. iv) Process improvement shows little economic impact but matters on environmental side because less land is needed. Up to 10% more land can be saved compared to least advanced technology. v) Energy conversion development can improve income of the plant, especially for the first generation plant. Each 5% improvement can lead to 0.6% change in IRR project, and a reduction of 1.1% in the Minimum selling price. vi) Equipment investment is the most sensitive parameter to alter biofuel prices and profitability. The conventional plant is more sensitive to equipment investment, land prices and trash costs in this order while second generation plant is sensitive to equipment investment and almost insensitive to land prices and trash costs changes. vii) Assuming an average payment of US 27.7 million). viii) Productivity gains reduce the repayment time of CO2 debt, with ethanol productivity having a stronger contribution. Besides, from a growth rate of ethanol and sugar cane productivity from 0.5% to 4.0% per year, the repayment time changes from 11.8 years to a range between 6.5 years and 5.5 years and 13 and 9.5, respectively. In conclusion, the appraisal model represents a useful tool for analyzing many issues related with the dilemmas involved in biofuel production
Multiple-Resampling Receiver Design for OFDM Over Doppler-Distorted Underwater Acoustic Channels
Cataloged from PDF version of article.In this paper, we focus on orthogonal frequency-divisionmultiplexing
(OFDM) receiver designs for underwater acoustic
(UWA) channels with user- and/or path-specific Doppler scaling
distortions. The scenario is motivated by the cooperative communications
framework, where distributed transmitter/receiver
pairs may experience significantly different Doppler distortions, as
well as by the single-user scenarios, where distinct Doppler scaling
factors may exist among different propagation paths. The conventional
approach of front–end resampling that corrects for common
Doppler scalingmay not be appropriatein such scenarios, rendering
a post-fast-Fourier-transform (FFT) signal that is contaminated by
user- and/or path-specific intercarrier interference. To counteract
this problem, we propose a family of front–end receiver structures
thatutilizemultiple-resampling (MR)branches,eachmatched to the
Doppler scaling factor of a particular user and/or path. Following
resampling, FFT modules transform the Doppler-compensated
signals into the frequency domain for further processing through
linear or nonlinear detection schemes. As part of the overall receiver
structure, a gradient–descent approachis also proposed to refine the
channel estimates obtained by standard sparse channel estimators.
The effectiveness and robustness of the proposed receivers are
demonstrated via simulations, as well as emulations based on real
data collected during the 2010 Mobile Acoustic Communications
Experiment (MACE10, Martha’s Vineyard, MA) and the 2008
Kauai Acomms MURI (KAM08, Kauai, HI) experiment
An Infrastructure for acquiring high quality semantic metadata
Because metadata that underlies semantic web applications is gathered from distributed and heterogeneous data sources, it is important to ensure its quality (i.e., reduce duplicates, spelling errors, ambiguities). However, current infrastructures that acquire and integrate semantic data have only marginally addressed the issue of metadata quality. In this paper we present our metadata acquisition infrastructure, ASDI, which pays special attention to ensuring that high quality metadata is derived. Central to the architecture of ASDI is a erification engine that relies on several semantic web tools to check the quality of the derived data. We tested our prototype in the context of building a semantic web portal for our lab, KMi. An experimental evaluation omparing the automatically extracted data against manual annotations indicates that the verification engine enhances the quality of the extracted semantic metadata
Adaptive OFDM Modulation for Underwater Acoustic Communications: Design Considerations and Experimental Results
Cataloged from PDF version of article.In this paper, we explore design aspects of adaptive modulation based on orthogonal frequency-division multiplexing (OFDM) for underwater acoustic (UWA) communications, and study its performance using real-time at-sea experiments. Our design criterion is to maximize the system throughput under a target average bit error rate (BER). We consider two different schemes based on the level of adaptivity: in the first scheme, only the modulation levels are adjusted while the power is allocated uniformly across the subcarriers, whereas in the second scheme, both the modulation levels and the power are adjusted adaptively. For both schemes we linearly predict the channel one travel time ahead so as to improve the performance in the presence of a long propagation delay. The system design assumes a feedback link from the receiver that is exploited in two forms: one that conveys the modulation alphabet and quantized power levels to be used for each subcarrier, and the other that conveys a quantized estimate of the sparse channel impulse response. The second approach is shown to be advantageous, as it requires significantly fewer feedback bits for the same system throughput. The effectiveness of the proposed adaptive schemes is demonstrated using computer simulations, real channel measurements recorded in shallow water off the western coast of Kauai, HI, USA, in June 2008, and real-time at-sea experiments conducted at the same location in July 2011. We note that this is the first paper that presents adaptive modulation results for UWA links with real-time at-sea experiments. © 2013 IEEE
- …
