152 research outputs found

    ADA Compliance of Fitness Facilities in the Twin Cities Metropolitan Area

    Get PDF
    Within the Americans with Disabilities Act (ADA), Title III mandates accessibility of all public facilities, including fitness facilities. The purpose of the study was to examine the ADA compliance of fitness facilities located in the Twin Cities Metropolitan area. Twenty fitness facilities were randomly sampled within the Twin Cities Metropolitan area. Each facility was evaluated for ADA compliance using the Accessibility Instruments Measuring Fitness and Recreation Environments (AIMFREE) Professional Version assessment (The National Center on Physical Activity and Disability, 2010). The assessment encompasses twelve domains that evaluate physical, educational, and informational aspects within a fitness facility. None of the 20 participating fitness facilities in the Twin Cities area were 100% ADA compliant with all the AIMFREE domains. The overall compliance of all 20 participating fitness facility was 48.4%. The highest scoring domains were water fountains (77.8%), bathrooms (73.4%), and elevators (71.8%). The lowest scoring domains were telephones (23.3%), facility information (32.1%), and entrance and route accessibility (39.9%). The results of the study showed the fitness facilities in the Twin Cities Metropolitan area were not compliant with ADA standards. Occupational therapy practitioners have a significant role in advocating for accessibility of public facilities, such as fitness facilities. Practitioners can collaborate with fitness facility owners to provide structural and educational resources to better accommodate the needs individuals with disabilities while participating in physical activity

    ReleveÂŽ

    Get PDF
    Southern Illinois University Carbondal

    c-Myc affects mRNA translation, cell proliferation and progenitor cell function in the mammary gland

    Get PDF
    BACKGROUND: The oncoprotein c-Myc has been intensely studied in breast cancer and mouse mammary tumor models, but relatively little is known about the normal physiological role of c-Myc in the mammary gland. Here we investigated functions of c-Myc during mouse mammary gland development using a conditional knockout approach. RESULTS: Generation of c-mycfl/fl mice carrying the mammary gland-specific WAPiCre transgene resulted in c-Myc loss in alveolar epithelial cells starting in mid-pregnancy. Three major phenotypes were observed in glands of mutant mice. First, c-Myc-deficient alveolar cells had a slower proliferative response at the start of pregnancy, causing a delay but not a block of alveolar development. Second, while milk composition was comparable between wild type and mutant animals, milk production was reduced in mutant glands, leading to slower pup weight-gain. Electron microscopy and polysome fractionation revealed a general decrease in translational efficiency. Furthermore, analysis of mRNA distribution along the polysome gradient demonstrated that this effect was specific for mRNAs whose protein products are involved in milk synthesis. Moreover, quantitative reverse transcription-polymerase chain reaction analysis revealed decreased levels of ribosomal RNAs and ribosomal protein-encoding mRNAs in mutant glands. Third, using the mammary transplantation technique to functionally identify alveolar progenitor cells, we observed that the mutant epithelium has a reduced ability to repopulate the gland when transplanted into NOD/SCID recipients. CONCLUSION: We have demonstrated that c-Myc plays multiple roles in the mouse mammary gland during pregnancy and lactation. c-Myc loss delayed, but did not block proliferation and differentiation in pregnancy. During lactation, lower levels of ribosomal RNAs and proteins were present and translation was generally decreased in mutant glands. Finally, the transplantation studies suggest a role for c-Myc in progenitor cell proliferation and/or survival

    State-of-the-Art Automated Patch Clamp Devices: Heat Activation, Action Potentials, and High Throughput in Ion Channel Screening

    Get PDF
    Ion channels are essential in a wide range of cellular functions and their malfunction underlies many disease states making them important targets in drug discovery. The availability of standardized cell lines expressing ion channels of interest lead to the development of diverse automated patch clamp (APC) systems with high-throughput capabilities. These systems are now available for drug screening, but there are limitations in the application range. However, further development of existing devices and introduction of new systems widen the range of possible experiments and increase throughput. The addition of well controlled and fast solution exchange, temperature control and the availability of the current clamp mode are required to analyze standard cell lines and excitable cells such as stem cell-derived cardiomyocytes in a more physiologically relevant environment. Here we describe two systems with different areas of applications that meet the needs of drug discovery researchers and basic researchers alike. The here utilized medium throughput APC device is a planar patch clamp system capable of recording up to eight cells simultaneously. Features such as temperature control and recordings in the current clamp mode are described here. Standard cell lines and excitable cells such as stem cell-derived cardiomyocytes have been used in the voltage clamp and current clamp modes with the view to finding new drug candidates and safety testing methods in a more physiologically relevant environment. The high-throughput system used here is a planar patch clamp screening platform capable of recording from 96 cells in parallel and offers a throughput of 5000 data points per day. Full dose response curves can be acquired from individual cells reducing the cost per data point. The data provided reveals the suitability and relevance of both APC platforms for drug discovery, ion channel research, and safety testing

    Mixed-effects modeling for concentration effect profiling in cardiomyocyte contractility assays

    Get PDF
    Présentation PosterInternational audienceBackground. With the advent of new realtime technologies such as impedance assays, extracellular field potential measurement and optical sensing for in vitro cardiac safety screening studies, researchers have now to frequently deal with analyzing voluminous amounts of complex time responses. In this context, main issues are to speed up the data analysis process and to extract accurate information for cardiotoxicity profiling. Objectives. A first objective is the development of an innovative computational method able to globally process a large set of in vitro cardiac signals (provided by 96, 384 and 1536-well microplates) instead of analyzing them once at a time. Such a statistical population approach has the advantage the account for the common characteristics between the individual responses. A second objective is to handle qualitative factors (type of cardiomyocytes, compounds and media, etc.) in the computational process. Methods. The proposed estimation method relies on the combination of a dynamic system identification method and a mixed-effect modeling technique. An output-error polynomial model structure is used for the system identification step and a stochastic approximation expectation maximization is implemented for the estimation of the hyperparameters. Input signals to be analyzed are the contractility amplitudes of cardiomyocytes submitted to compounds to be tested. Impedance signals and contractility amplitude were provided by a CardioExcyte96 system (Nanion Technologies). human iPSC-derived cardiomyocytes were provided by Cellartis Takara with 30,000 cells per well. Results. Our data-driven profiling method extracted four parameters that completely fit the contractility time variations and fully characterize the effect of compound concentration on the contractility amplitude. The proposed method not only estimates the values of the model parameters but also their uncertainty distribution. The latter allows to compute p-values associated with each effect.Conclusion. We show that the population-based estimation method developed in this study is suited to the fully characterize dynamic effects in cardiomyocyte contractility assays. Each parameter becomes a profiling characteristics of the concentration effect. It can be applied to estimate concentration and compounds effects with an optimal accuracy and could be extended directly to multielectrode array and optical sensing responses

    Key signalling nodes in mammary gland development and cancer: Myc

    Get PDF
    Myc has been intensely studied since its discovery more than 25 years ago. Insight has been gained into Myc's function in normal physiology, where its role appears to be organ specific, and in cancer where many mechanisms contribute to aberrant Myc expression. Numerous signals and pathways converge on Myc, which in turn acts on a continuously growing number of identified targets, via transcriptional and nontranscriptional mechanisms. This review will concentrate on Myc as a signaling mediator in the mammary gland, discussing its regulation and function during normal development, as well as its activation and roles in breast cancer
    • 

    corecore