313 research outputs found

    Isotopic distribution of fission fragments in collisions between 238U beam and 9Be and 12C targets at 24 MeV/u

    Full text link
    Inverse kinematics coupled to a high-resolution spectrometer is used to investigate the isotopic yields of fission fragments produced in reactions between a 238U beam at 24 MeV/u and 9Be and 12C targets. Mass, atomic number and isotopic distributions are reported for the two reactions. These informations give access to the neutron excess and the isotopic distribution widths, which together with the atomic-number and mass distributions are used to investigate the fusion-fission dynamics.Comment: Submitted to PR

    Prolate-Spherical Shape Coexistence at N=28 in 44^{44}S

    Get PDF
    The structure of 44^{44}S has been studied using delayed γ\gamma and electron spectroscopy at \textsc{ganil}. The decay rates of the 02+^+_2 isomeric state to the 21+^+_1 and 01+^+_1 states have been measured for the first time, leading to a reduced transition probability B(E2~:~21+^{+}_1\rightarrow02+)^{+}_2)= 8.4(26)~e2^2fm4^4 and a monopole strength ρ2\rho^2(E0~:~02+^{+}_2\rightarrow01+)^{+}_1) =~8.7(7)×\times103^{-3}. Comparisons to shell model calculations point towards prolate-spherical shape coexistence and a phenomenological two level mixing model is used to extract a weak mixing between the two configurations.Comment: 5 pages, 3 figures, accepted for publication in Physical Review Letter

    Social presence in the 21st Century: an adjustment to the Community of Inquiry framework

    Get PDF
    The Community of Inquiry framework, originally proposed by Garrison, Anderson and Archer (2000) identifies teaching, social and cognitive presences as central to a successful online educational experience. This article presents the findings of a study conducted in Uruguay between 2007 and 2010. The research aimed to establish the role of cognitive, social and teaching presences in the professional development of 40 English language teachers on Continuous Professional Development (CPD) programmes delivered in blended learning settings. The findings suggest that teaching presence and cognitive presence have themselves 'become social'. The research points to social presence as a major lever for engagement, sense-making and peer support. Based on the patterns identified in the study, this article puts forward an adjustment to the Community of Inquiry framework, which shows social presence as more prominent within the teaching and cognitive constructs than the original version of the framework suggests

    Probing Nuclear forces beyond the drip-line using the mirror nuclei 16^{16}N and 16^{16}F

    Get PDF
    Radioactive beams of 14^{14}O and 15^{15}O were used to populate the resonant states 1/2+^+, 5/2+^+ and 0,1,20^-,1^-,2^- in the unbound 15^{15}F and 16^{16}F nuclei respectively by means of proton elastic scattering reactions in inverse kinematics. Based on their large proton spectroscopic factor values, the resonant states in 16^{16}F can be viewed as a core of 14^{14}O plus a proton in the 2s1/2_{1/2} or 1d5/2_{5/2} shell and a neutron in 1p1/2_{1/2}. Experimental energies were used to derive the strength of the 2s1/2_{1/2}-1p1/2_{1/2} and 1d5/2_{5/2}-1p1/2_{1/2} proton-neutron interactions. It is found that the former changes by 40% compared with the mirror nucleus 16^{16}N, and the second by 10%. This apparent symmetry breaking of the nuclear force between mirror nuclei finds explanation in the role of the large coupling to the continuum for the states built on an =0\ell=0 proton configuration.Comment: 6 pages, 3 figures, 2 tables, accepted for publication as a regular article in Physical Review

    New pathway to bypass the 15O waiting point

    Full text link
    We propose the sequential reaction process 15^{15}O(pp,γ)(β+\gamma)(\beta^{+})16^{16}O as a new pathway to bypass of the 15^{15}O waiting point. This exotic reaction is found to have a surprisingly high cross section, approximately 1010^{10} times higher than the 15^{15}O(pp,β+\beta^{+})16^{16}O. These cross sections were calculated after precise measurements of energies and widths of the proton-unbound 16^{16}F low lying states, obtained using the H(15^{15}O,p)15^{15}O reaction. The large (p,γ)(β+)(p,\gamma)(\beta^{+}) cross section can be understood to arise from the more efficient feeding of the low energy wing of the ground state resonance by the gamma decay. The implications of the new reaction in novae explosions and X-ray bursts are discussed.Comment: submitte

    Optical studies for the super separator spectrometer S3

    Get PDF
    International audienceS3 (Super Separator Spectrometer) [1] is a future device designed for experiments with the high intensity heavy ion stable beams of SPIRAL2 [2] at GANIL (Caen, France). It will include a target resistant to these very high intensities, a first stage momentum achromat for primary beam extraction and suppression, a second stage mass spectrometer and a dedicated detection system. This spectrometer includes large aperture quadrupole triplets with embedded multipolar corrections. To enable the primary beam extraction one triplet has to be opened on one side, which requires an appropriate design of such a multipolar magnet. The final mass separation power required for S3 needs a careful design of the optics with a high level of aberration correction. Multiple symmetric lattices were studied for this purpose. A 4-fold symmetric lattice and the achieved results are described in this paper

    Cross Section Limits for the 208^{208}Pb(86^{86}Kr,n)293^{293}118 Reaction

    Full text link
    In April-May, 2001, the previously reported experiment to synthesize element 118 using the 208^{208}Pb(86^{86}Kr,n)293^{293}118 reaction was repeated. No events corresponding to the synthesis of element 118 were observed with a total beam dose of 2.6 x 1018^{18} ions. The simple upper limit cross sections (1 event) were 0.9 and 0.6 pb for evaporation residue magnetic rigidities of 2.00 TmT m and 2.12 TmT m, respectively. A more detailed cross section calculation, accounting for an assumed narrow excitation function, the energy loss of the beam in traversing the target and the uncertainty in the magnetic rigidity of the Z=118 recoils is also presented. Re-analysis of the primary data files from the 1999 experiment showed the reported element 118 events are not in the original data. The current results put constraints on the production cross section for synthesis of very heavy nuclei in cold fusion reactions.Comment: 7 pages, 2 figures. Submitted to EPJ

    Evidence of Z=120 compound nucleus formation from lifetime measurement in the 238^{238}U+Ni reaction at 6.62 MeV/nucleon

    Get PDF
    CAS NIMThe formation of compound nuclei with Z=120, followed by fission, has been evidenced in the 238U+Ni system at 6.62 MeV/nucleon by very long reaction times (t ~ 10-17s) measured by the blocking technique in single crystals

    Fission time measurements: a new probe into super-heavy element stability

    Get PDF
    Accepted for publication in Physical Review LettersReaction mechanism analyses performed with a 4 π\pi detector for the systems 208^{208}Pb+Ge, 238U+Niand^{238}U+Ni and ^{238}U+Ge,combinedwithanalysesoftheassociatedreactiontimedistributions,provideuswithevidencefornucleiwithZ=120and124livinglongerthanU+Ge, combined with analyses of the associated reaction time distributions, provide us with evidence for nuclei with Z=120 and 124 living longer than 10^−18sandarisingfromhighlyexcitedcompoundnuclei.Bycontrast,theneutrondeficientnucleiwithZ=114possiblyformedins and arising from highly excited compound nuclei. By contrast, the neutron deficient nuclei with Z=114 possibly formed in ^{208}$Pb+Ge reactions have shorter lifetimes, close to or below the sensitivity limit of the experiment
    corecore