90 research outputs found

    Use of a new proximity assay (NanoBRET) to investigate the ligand binding characteristics of three fluorescent ligands to the human β1-adrenoceptor expressed in HEK-293 cells

    Get PDF
    Previous research has indicated that allosteric interactions across the dimer interface of β1-adrenoceptors may be responsible for a secondary low affinity binding conformation. Here we have investigated the potential for probe dependence, in the determination of antagonist pKi values at the human β1-adenoceptor, which may result from such allosterism interactions. Three fluorescent β1-adrenoceptor ligands were used to investigate this using bioluminescence energy transfer (BRET) between the receptor-bound fluorescent ligand and the N-terminal NanoLuc tag of a human β1-adrenoceptor expressed in HEK 293 cells (NanoBRET). This proximity assay showed high affinity specific binding to the NanoLuc-β1-adrenoceptor with each of the three fluorescent ligands yielding KD values of 87.1 ± 10nM (n=8), 38.1 ± 12nM (n=7), 13.4 ± 2nM (n=14) for propranolol-Peg8-BY630, propranolol-3(Ala-Ala)-BY630 and CGP-12177- TMR respectively. Parallel radioligand-binding studies with 3H-CGP12177 and TIRF microscopy, to monitor NanoLuc bioluminescence, confirmed a high cell surface expression of the NanoLuc- 31-adrenoceptor in HEK 293 cells (circa 1500 fmol.mg protein-1). Following a 1h incubation with fluorescent ligands and β1-adrenoceptor competing antagonists, there were significant differences (p < 0.001) in the pKi values obtained for CGP20712a and CGP 12177 with the different fluorescent ligands and 3H-CGP 12177. However, increasing the incubation time to 2h removed these significant differences. The data obtained show that the NanoBRET assay can be applied successfully to study ligand-receptor interactions at the human β1-adrenoceptor. However, the study also emphasizes the importance of ensuring that both the fluorescent and competing ligands are in true equilibrium before interpretations regarding probe dependence can be made

    Fragment-Based Discovery of Subtype-Selective Adenosine Receptor Ligands from Homology Models

    Get PDF
    Fragment-based lead discovery (FBLD) holds great promise for drug discovery, but applications to G protein-coupled receptors (GPCRs) have been limited by a lack of sensitive screening techniques and scarce structural information. If virtual screening against homology models of GPCRs could be used to identify fragment ligands, FBLD could be extended to numerous important drug targets and contribute to efficient lead generation. Access to models of multiple receptors may further enable the discovery of fragments that bind specifically to the desired target. To investigate these questions, we used molecular docking to screen >500?000 fragments against homology models of the A3 and A1 adenosine receptors (ARs) with the goal to discover A3AR-selective ligands. Twenty-one fragments with predicted A3AR-specific binding were evaluated in live-cell fluorescence-based assays; of eight verified ligands, six displayed A3/A1 selectivity, and three of these had high affinities ranging from 0.1 to 1.3 ?M. Subsequently, structure-guided fragment-to-lead optimization led to the identification of a >100-fold-selective antagonist with nanomolar affinity from commercial libraries. These results highlight that molecular docking screening can guide fragment-based discovery of selective ligands even if the structures of both the target and antitarget receptors are unknown. The same approach can be readily extended to a large number of pharmaceutically important targets

    Synthesis, biological evaluation, and utility of fluorescent ligands targeting the μ-opioid receptor

    Get PDF
    Fluorescently labeled ligands are useful pharmacological research tools for studying receptor localization, trafficking, and signaling processes via fluorescence imaging. They are also employed in fluorescent binding assays. This study is centered on the design, synthesis, and pharmacological evaluation of fluorescent probes for the opioid receptors, for which relatively few non-peptidic fluorescent probes currently exist. The known μ-opioid receptor (MOR) partial agonist, buprenorphine, was structurally elaborated to include an amidoalkylamine linker moiety that was coupled with a range of fluorophores to afford new fluorescent probes. All compounds proved to be selective MOR antagonists. Confocal fluorescence microscopy studies revealed that the probe incorporating a sulfonated cyanine-5 fluorophore was the most appropriate for imaging studies. This ligand was subsequently employed in an automated fluorescence-based competition binding assay, allowing the pKi values of several well-known opioid ligands to be determined. Thus, this new probe will prove useful in future studies of MOR receptor pharmacology

    Single molecule binding of a ligand to a G-protein-coupled receptor in real time using fluorescence correlation spectroscopy, rendered possible by nano-encapsulation in styrene maleic acid lipid particles

    Get PDF
    The fundamental importance of membrane proteins in cellular processes has driven a marked increase in the use of membrane mimetic approaches for studying and exploiting these proteins. Nano-encapsulation strategies which preserve the native lipid bilayer environment are particularly attractive. Consequently, the use of poly(styrene co-maleic acid) (SMA) has been widely adopted to solubilise proteins directly from cell membranes by spontaneously forming "SMA Lipid Particles" (SMALPs). G-protein-coupled receptors (GPCRs) are ubiquitous "chemical switches", are central to cell signalling throughout the evolutionary tree, form the largest family of membrane proteins in humans and are a major drug discovery target. GPCR-SMALPs that retain binding capability would be a versatile platform for a wide range of down-stream applications. Here, using the adenosine A2A receptor (A2AR) as an archetypical GPCR, we show for the first time the utility of fluorescence correlation spectroscopy (FCS) to characterise the binding capability of GPCRs following nano-encapsulation. Unbound fluorescent ligand CA200645 exhibited a monophasic autocorrelation curve (dwell time, τD = 68 ± 2 μs; diffusion coefficient, D = 287 ± 15 μm2 s-1). In the presence of A2AR-SMALP, bound ligand was also evident (τD = 625 ± 23 μs; D = 30 ± 4 μm2 s-1). Using a non-receptor control (ZipA-SMALP) plus competition binding confirmed that this slower component represented binding to the encapsulated A2AR. Consequently, the combination of GPCR-SMALP and FCS is an effective platform for the quantitative real-time characterisation of nano-encapsulated receptors, with single molecule sensitivity, that will have widespread utility for future exploitation of GPCR-SMALPs in general

    Synthesis and evaluation of the first fluorescent antagonists of the human P2Y2 receptor based on AR-C118925

    Get PDF
    The human P2Y2 receptor (hP2Y2R) is a G protein-coupled receptor that shows promise as a therapeutic target for many important conditions including anti-metastatic cancer therapy and more recently for the treatment of idiopathic pulmonary fibrosis. As such, there is a need for new hP2Y2R antagonists and molecular probes to study this receptor. Herein, we report the development of a new series of non-nucleotide hP2Y2R antagonists leading to the discovery of a series of fluorescent ligands containing different linkers and fluorophores based on the known, non-nucleotide hP2Y2R antagonist AR-C118925 (1). One of these conjugates 98 displayed micromolar affinity for the hP2Y2R (pKd = 6.32 ± 0.10; n=17) using a bioluminescence energy transfer (BRET) assay. Confocal microscopy with this ligand revealed displaceable membrane labeling of astrocytoma cells expressing un-tagged hP2Y2R. These properties, make 98 one of the first tools for studying hP2Y2R distribution and organization

    Direct visualisation of internalization of the adenosine A3 receptor and localization with arrestin3 using a fluorescent agonist

    Get PDF
    Fluorescence based probes provide a novel way to study the dynamic internalization process of G protein-coupled receptors (GPCRs). Recent advances in the rational design of fluorescent ligands for GPCRs have been used here to generate new fluorescent agonists containing tripeptide linkers for the adenosine A3 receptor. The fluorescent agonist BY630-X-(D)-A-(D)-A-G-ABEA was found to be a highly potent agonist at the adenosine A3 receptor in both reporter gene (pEC50 = 8.48 ± 0.09) and internalization assays (pEC50 = 7.47 ± 0.11). Confocal imaging studies showed that BY630-X-(D)-A-(D)-A-G-ABEA was internalized with A3 linked to yellow fluorescent protein, which was blocked by the competitive antagonist MRS1220. Internalization of untagged adenosine A3 could also be visualized with BY630-X-(D)-A-(D)-A-G-ABEA treatment. Further, BY630-X-(D)-A-(D)-A-G-ABEA stimulated the formation of receptor–arrestin3 complexes and was found to localize with these intracellular complexes. This highly potent agonist with excellent imaging properties should be a valuable tool to study receptor internalization

    Efficient G protein coupling is not required for agonist‐mediated internalization and membrane reorganization of the adenosine A 3 receptor

    Get PDF
    Organization of G protein-coupled receptors at the plasma membrane has been the focus of much recent attention. Advanced microscopy techniques have shown that these receptors can be localized to discrete microdomains and reorganization upon ligand activation is crucial in orchestrating their signaling. Here, we have compared the membrane organization and downstream signaling of a mutant (R108A, R3.50A) of the adenosine A3 receptor (A3AR) to that of the wild-type receptor. Fluorescence Correlation Spectroscopy (FCS) studies with a fluorescent agonist (ABEA-X-BY630) demonstrated that both wild-type and mutant receptors bind agonist with high affinity but in subsequent downstream signaling assays the R108A mutation abolished agonist-mediated inhibition of cAMP production and ERK phosphorylation. In further FCS studies, both A3AR and A3AR R108A underwent similar agonist-induced increases in receptor density and molecular brightness which were accompanied by a decrease in membrane diffusion after agonist treatment. Using bimolecular fluorescence complementation, experiments showed that the R108A mutant retained the ability to recruit β-arrestin and these receptor/arrestin complexes displayed similar membrane diffusion and organization to that observed with wild-type receptors. These data demonstrate that effective G protein signaling is not a prerequisite for agonist-stimulated β-arrestin recruitment and membrane reorganization of the A3AR

    Detection of genome-edited and endogenously expressed G protein-coupled receptors

    Get PDF
    © 2021 The Authors. The FEBS Journal published by John Wiley & Sons Ltd on behalf of Federation of European Biochemical Societies. G protein-coupled receptors (GPCRs) are the largest family of membrane receptors and major targets for FDA-approved drugs. The ability to quantify GPCR expression and ligand binding characteristics in different cell types and tissues is therefore important for drug discovery. The advent of genome editing along with developments in fluorescent ligand design offers exciting new possibilities to probe GPCRs in their native environment. This review provides an overview of the recent technical advances employed to study the localisation and ligand binding characteristics of genome-edited and endogenously expressed GPCRs

    Design and elaboration of a tractable tricyclic scaffold to synthesize druglike inhibitors of dipeptidyl peptidase-4 (DPP-4), antagonists of the C–C Chemokine Receptor Type 5 (CCR5), and highly potent and selective phosphoinositol-3 Kinase δ (PI3Kδ) inhibitors

    Get PDF
    A novel molecular scaffold has been synthesized, and its incorporation into new analogues of biologically active molecules across multiple target classes will be discussed. In these studies, we have shown use of the tricyclic scaffold to synthesize potent inhibitors of the serine peptidase DPP-4, antagonists of the CCR5 receptor, and highly potent and selective PI3K δ isoform inhibitors. We also describe the predicted physicochemical properties of the resulting inhibitors and conclude that the tractable molecular scaffold could have potential application in future drug discovery programs

    Conversion of a non-selective adenosine receptor antagonist into A3-selective high affinity fluorescent probes using peptide-based linkers

    Get PDF
    Advances in fluorescence-based imaging technologies have helped propel the study of real-time biological readouts and analysis across many different areas. In particular the use of fluorescent ligands as chemical tools to study proteins such as G protein-coupled receptors (GPCRs) has received ongoing interest. Methods to improve the efficient chemical synthesis of fluorescent ligands remain of paramount importance to ensure this area of bioanalysis continues to advance. Here we report conversion of the non-selective GPCR adenosine receptor antagonist Xanthine Amine Congener into higher affinity and more receptor subtype-selective fluorescent antagonists. This was achieved through insertion and optimisation of a dipeptide linker between the adenosine receptor pharmacophore and the fluorophore. Fluorescent probe 27 containing BODIPY 630/650 (pKD = 9.12 ± 0.05 [hA3AR]), and BODIPY FL-containing 28 (pKD = 7.96 ± 0.09 [hA3AR]) demonstrated clear, displaceable membrane binding using fluorescent confocal microscopy. From in silico analysis of the docked ligand-receptor complexes of 27, we suggest regions of molecular interaction that could account for the observed selectivity of these peptide-linker based fluorescent conjugates. This general approach of converting a non-selective ligand to a selective biological tool could be applied to other ligands of interest
    corecore