739 research outputs found
Fault Slip and Exhumation History of the Willard Thrust Sheet, Sevier Fold‐Thrust Belt, Utah: Relations to Wedge Propagation, Hinterland Uplift, and Foreland Basin Sedimentation
Zircon (U‐Th)/He (ZHe) and zircon fission track thermochronometric data for 47 samples spanning the areally extensive Willard thrust sheet within the western part of the Sevier fold‐thrust belt record enhanced cooling and exhumation during major thrust slip spanning approximately 125–90 Ma. ZHe and zircon fission track age‐paleodepth patterns along structural transects and age‐distance relations along stratigraphic‐parallel traverses, combined with thermo‐kinematic modeling, constrain the fault slip history, with estimated slip rates of ~1 km/Myr from 125 to 105 Ma, increasing to ~3 km/Myr from 105 to 92 Ma, and then decreasing as major slip was transferred onto eastern thrusts. Exhumation was concentrated during motion up thrust ramps with estimated erosion rates of ~0.1 to 0.3 km/Myr. Local cooling ages of approximately 160–150 Ma may record a period of regional erosion, or alternatively an early phase of limited... (see full abstract in article)
Magnitude of rift-related burial and orogenic contraction in the Marrakech High Atlas revealed by zircon (U-Th)/He thermochronology and thermal modelling
The Atlas of Morocco is a continental rift developed during the Triassic-Jurassic and moderately inverted during the Cenozoic. The High Atlas south of Marrakech, with exposures of basement and Triassic early synrift deposits, has been viewed as a high during the Mesozoic rifting. First zircon (U-Th)/He ages and thermal models obtained from 42 samples in the Marrakech High Atlas following two NNW-SSE transects across the mountain belt reveal that in contrast to previous models, the Triassic-Jurassic rift was well developed in the Marrakech High Atlas (with more than 4.5-6 km of rift-related deposits). Middle Jurassic-Early Cretaceous zHe cooling ages obtained indicate that rift-related subsidence in the Marrakech High Atlas finished in the Middle Jurassic and was followed by a period of exhumation where 2-3 km of rock were eroded. Thermal models from zHe data provide the first thermochronologic clue for a Late Cretaceous initiation of the Atlas compression-driven exhumation in the inner parts of the Marrakech High Atlas. The Triassic-Jurassic basin reconstruction assisted by thermochronology highlights a key role of inherited basement anisotropy in rift orientation and evolution, and on its subsequent inversion. Comparison of present-day and restored sections to the rifting stage aided by thermochronology suggests minimum values of total orogenic shortening in the Marrakech High Atlas of 13 to 14 km (21 to 17%), with exhumation of 1 to more than 5 km of rocks. Similar zHe ages on both sides of the Tizi n'Test fault evince minor vertical movements along the fault during the Atlas orogeny
Thermochronological constraints on the timing and magnitude of Miocene and Pliocene extension in the central Wassuk Range, western Nevada
Apatite fission track and (U-Th)/He thermochronological data provide new constraints on the timing of faulting and exhumation of the Wassuk Range, western Nevada, where east dipping normal faults have accommodated large-magnitude ENE-WSW oriented extension. Extensional deformation has resulted in the exhumation of structurally coherent fault blocks that expose sections of preextensional mostly granitic upper crust in the Grey Hills and central Wassuk Range. These fault blocks display westward tilts of ∼60° and expose preextensional paleodepths of up to ∼8.5 km, based on the structural reconstruction of tilted preextensional Tertiary andesite flows that unconformably overlie Mesozoic basement rocks. Apatite fission track and (U-Th)/He thermochronological data from the fault blocks constrain the onset of rapid footwall exhumation at ∼15 Ma. Fission track modeling results indicate rapid fault block exhumation occurred between ∼15 and 12 Ma, which is in agreement with Miocene volcanic rocks that bracket the tilting history. In addition, fission track and (U-Th)/He data suggest reduced rates of cooling following major extension, as well as renewed cooling related to active, high-angle faulting along the present-day range front starting at ∼4 Ma. Thermochronological data from structurally restored fault blocks indicate a preextensional Miocene geothermal gradient of 27° ± 5°C/km. The thermochronological constraints on the timing of extensional faulting and the eruptive history in the Wassuk Range imply a model for extension where crustal heating and volcanism precede the onset of rapid large magnitude extension, and where synextensional magmatism is suppressed during the highest rates of extension
Regional Pliocene exhumation of the Lesser Himalaya in the Indus drainage
© The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Clift, P. D., Zhou, P., Stockli, D. F., & Blusztajn, J. Regional Pliocene exhumation of the Lesser Himalaya in the Indus drainage. Solid Earth, 10(3), (2019): 647-661, doi:10.5194/se-10-647-2019.New bulk sediment Sr and Nd isotope data, coupled with U–Pb dating of detrital zircon grains from sediment cored by the International Ocean Discovery Program in the Arabian Sea, allow the reconstruction of erosion in the Indus catchment since ∼17 Ma. Increasing εNd values from 17 to 9.5 Ma imply relatively more erosion from the Karakoram and Kohistan, likely linked to slip on the Karakoram Fault and compression in the southern and eastern Karakoram. After a period of relative stability from 9.5 to 5.7 Ma, there is a long-term decrease in εNd values that corresponds with increasing relative abundance of >300 Ma zircon grains that are most common in Himalayan bedrocks. The continuous presence of abundant Himalayan zircons precludes large-scale drainage capture as the cause of decreasing εNd values in the submarine fan. Although the initial increase in Lesser Himalaya-derived 1500–2300 Ma zircons after 8.3 Ma is consistent with earlier records from the foreland basin, the much greater rise after 1.9 Ma has not previously been recognized and suggests that widespread unroofing of the Crystalline Lesser Himalaya and to a lesser extent Nanga Parbat did not occur until after 1.9 Ma. Because regional erosion increased in the Pleistocene compared to the Pliocene, the relative increase in erosion from the Lesser Himalaya does not reflect slowing erosion in the Karakoram and Greater Himalaya. No simple links can be made between erosion and the development of the South Asian Monsoon, implying a largely tectonic control on Lesser Himalayan unroofing.This research has been supported by the USSSP (grant no. 355-001)
IgE-Mediated Hypersensitivity Reactions to Cannabis in Laboratory Personnel
Background: There have been sporadic reports of hypersensitivity reactions to plants of the Cannabinaceae family (hemp and hops), but it has remained unclear whether these reactions are immunologic or nonimmunologic in nature. Objective: We examined the IgE-binding and histamine-releasing properties of hashish and marijuana extracts by CAP-FEIA and a basophil histamine release test. Methods: Two workers at a forensic laboratory suffered from nasal congestion, rbinitis, sneezing and asthmatic symptoms upon occupational contact with hashish or marijuana, which they had handled frequently for 25 and 16 years, respectively. Neither patient had a history of atopic disease. Serum was analyzed for specific IgE antibodies to hashish or marijuana extract by research prototype ImmunoCAP, and histamine release from basophils upon exposure to hashish or marijuana extracts was assessed. Results were matched to those of 4 nonatopic and 10 atopic control subjects with no known history of recreational or occupational exposure to marijuana or hashish. Results: Patient 1 had specific IgE to both hashish and marijuana (CAP class 2), and patient 2 to marijuana only (CAP class 2). Controls proved negative for specific IgE except for 2 atopic individuals with CAP class 1 to marijuana and 1 other atopic individual with CAP class 1 to hashish. Stimulation of basophils with hashish or marijuana extracts elicited histamine release from basophils of both patients and 4 atopic control subjects. Conclusions: Our results suggest an IgE-related pathomechanism for hypersensitivity reactions to marijuana or hashish. Copyright (C) 2011 S. Karger AG, Base
Exhumation of the Inyo Mountains, California: Implications for the Timing of Extension along the Western Boundary of the Basin and Range Province and Distribution of Dextral Fault Slip Rates across the Eastern California Shear Zone
New geologic mapping, tectonic geomorphologic, 10Be terrestrial cosmogenic nuclide, and (U-Th)/He zircon and apatite thermochronometric data provide the first numerical constraints on late Cretaceous to late Quaternary exhumation of the Inyo Mountains and vertical slip and horizontal extension rates across the eastern Inyo fault zone, California. The east-dipping eastern Inyo fault zone bounds the eastern flank of the Inyo Mountains, a prominent geomorphic feature within the western Basin and Range Province and eastern California shear zone. (U-Th)/He zircon and apatite thermochronometry yield age patterns across the range that are interpreted as indicating: (1) two episodes of moderate to rapid exhumation associated with Laramide deformation during the late Cretaceous/early Tertiary; (2) development of a slowly eroding surface during a prolonged period from early Eocene to middle Miocene; (3) rapid cooling, exhumation, and initiation of normal slip along the eastern Inyo fault zone, accommodated by westward tilting of the Inyo Mountains block, at 15.6 Ma; and (4) rapid cooling, exhumation, and renewed normal slip along the eastern Inyo fault zone at 2.8 Ma. Fault slip continues today as indicated by fault scarps that cut late Pleistocene alluvial fan surfaces. The second episode of normal slip at 2.8 Ma also signals onset of dextral slip along the Hunter Mountain fault, yielding a Pliocene dextral slip rate of 3.3 ± 1.0 mm/a, where a is years. Summing this dextral slip rate with estimated dextral slip rates along the Owens Valley, Death Valley, and Stateline faults yields a net geologic dextral slip rate across the eastern California shear zone of 9.3 + 2.2/–1.4 to 9.8 + 1.4/–1.0 mm/a
Middle to Late Miocene Extremely Rapid Exhumation and Thermal Reequilibration in the Kung Co Rift, Southern Tibet
The Kung Co rift is an approximately NNW striking, WSW dipping normal fault exposed in southern Tibet and is part of an extensive network of active approximately NS striking normal faults exposed across the Tibetan Plateau. Detailed new and published (U-Th)/He zircon and apatite thermochronometric data from the footwall of the early Miocene Kung Co granite provide constraints on the middle Miocene to present-day exhumation history of the footwall to the Kung Co fault. Inverse modeling of thermochronometric data yield age patterns that are interpreted as indicating (1) initiation of normal fault slip at ∼12–13 Ma and rapid exhumation of the footwall between ∼13 and 10 Ma, (2) acceleration of normal fault slip at rates of 21.9–6.9 mm/yr at ∼10 Ma, (3) rapid thermal reequilibration between 10 and 9 Ma, and (4) slow exhumation and/or quiescence from ∼9 Ma to the present day. Hanging glacial valleys in the footwall and fault scarps that cut late Quaternary till and moraine deposits indicate that fault slip continues today. Middle to late Miocene initiation of extension across the Kung Co rift is broadly the same as the documented initiation of EW extension across the south central Tibetan Plateau. Eastward flow of middle or lower crust from beneath Tibet accommodated by northward underthrusting of Indian crust beneath Tibet provides a plausible explanation for the onset of EW extension across the Tibetan Plateau
Constraining Deformation in the North Pamir and the Westernmost Tarim Basin
Abstract HKT-ISTP 2013
A
Combining Monte Carlo generators with next-to-next-to-leading order calculations: event reweighting for Higgs boson production at the LHC
We study a phenomenological ansatz for merging next-to-next-to-leading order
(NNLO) calculations with Monte Carlo event generators. We reweight them to
match bin-integrated NNLO differential distributions. To test this procedure,
we study the Higgs boson production cross-section at the LHC, for which a fully
differential partonic NNLO calculation is available. We normalize PYTHIA and
MC@NLO Monte Carlo events for Higgs production in the gluon fusion channel to
reproduce the bin integrated NNLO double differential distribution in the
transverse momentum and rapidity of the Higgs boson. These events are used to
compute differential distributions for the photons in the pp \to H \to \gamma
\gamma decay channel, and are compared to predictions from fixed-order
perturbation theory at NNLO. We find agreement between the reweighted
generators and the NNLO result in kinematic regions where we expect a good
description using fixed-order perturbation theory. Kinematic boundaries where
resummation is required are also modeled correctly using this procedure. We
then use these events to compute distributions in the pp \to H \to W^+W^- \to
l^+l^- \nu\bar{\nu} channel, for which an accurate description is needed for
measurements at the LHC. We find that the final state lepton distributions
obtained from PYTHIA are not significantly changed by the reweighting
procedure.Comment: 18 pages, 14 fig
Accommodation of transpressional strain in the Arabia-Eurasia collision zone: new constraints from (U-Th)/He thermochronology in the Alborz mountains, north Iran
The Alborz range of N Iran provides key information on the spatiotemporal evolution and characteristics of the Arabia-Eurasia continental collision zone. The southwestern Alborz range constitutes a transpressional duplex, which accommodates oblique shortening between Central Iran and the South Caspian Basin. The duplex comprises NW-striking frontal ramps that are kinematically linked to inherited E-W-striking, right-stepping lateral to obliquely oriented ramps. New zircon and apatite (U-Th)/He data provide a high-resolution framework to unravel the evolution of collisional tectonics in this region. Our data record two pulses of fast cooling associated with SW-directed thrusting across the frontal ramps at ~ 18–14 and 9.5-7.5 Ma, resulting in the tectonic repetition of a fossil zircon partial retention zone and a cooling pattern with a half U-shaped geometry. Uniform cooling ages of ~ 7–6 Ma along the southernmost E-W striking oblique ramp and across its associated NW-striking frontal ramps suggests that the ramp was reactivated as a master throughgoing, N-dipping thrust. We interpret this major change in fault kinematics and deformation style to be related to a change in the shortening direction from NE to N/NNE. The reduction in the obliquity of thrusting may indicate the termination of strike-slip faulting (and possibly thrusting) across the Iranian Plateau, which could have been triggered by an increase in elevation. Furthermore, we suggest that ~ 7-6-m.y.-old S-directed thrusting predated inception of the westward motion of the South Caspian Basin
- …
