21 research outputs found

    The Physics Case for the New Muon (g-2) Experiment

    Full text link
    This White Paper briefly reviews the present status of the muon (g-2) experiment and the physics motivation for a new effort. The present comparison between experiment and theory indicates a tantalizing 3.4σ3.4 \sigma deviation. An improvement in precision on this comparison by a factor of 2--with the central value remaining unchanged--will exceed the ``discovery'' threshold, with a sensitivity above 6σ6 \sigma. The 2.5-fold reduction improvement goal of the new Brookhaven E969 experiment, along with continued steady reduction of the standard model theory uncertainty, will achieve this more definitive test. Already, the (g-2) result is arguably the most compelling indicator of physics beyond the standard model and, at the very least, it represents a major constraint for speculative new theories such as supersymmetry or extra dimensions. In this report, we summarize the present experimental status and provide an up-to-date accounting of the standard model theory, including the expectations for improvement in the hadronic contributions, which dominate the overall uncertainty. Our primary focus is on the physics case that motivates improved experimental and theoretical efforts. Accordingly, we give examples of specific new-physics implications in the context of direct searches at the LHC as well as general arguments about the role of an improved (g-2) measurement. A brief summary of the plans for an upgraded effort complete the report.Comment: 18 pages, 7 figure

    T helper cell subsets specific for pseudomonas aeruginosa in healthy individuals and patients with cystic fibrosis

    Get PDF
    Background: We set out to determine the magnitude of antigen-specific memory T helper cell responses to Pseudomonas aeruginosa in healthy humans and patients with cystic fibrosis. Methods: Peripheral blood human memory CD4+ T cells were co-cultured with dendritic cells that had been infected with different strains of Pseudomonas aeruginosa. The T helper response was determined by measuring proliferation, immunoassay of cytokine output, and immunostaining of intracellular cytokines. Results: Healthy individuals and patients with cystic fibrosis had robust antigen-specific memory CD4+ T cell responses to Pseudomonas aeruginosa that not only contained a Th1 and Th17 component but also Th22 cells. In contrast to previous descriptions of human Th22 cells, these Pseudomonal-specific Th22 cells lacked the skin homing markers CCR4 or CCR10, although were CCR6+. Healthy individuals and patients with cystic fibrosis had similar levels of Th22 cells, but the patient group had significantly fewer Th17 cells in peripheral blood. Conclusions: Th22 cells specific to Pseudomonas aeruginosa are induced in both healthy individuals and patients with cystic fibrosis. Along with Th17 cells, they may play an important role in the pulmonary response to this microbe in patients with cystic fibrosis and other conditions

    Supraparticles for Bare‐Eye H2 Indication and Monitoring: Design, Working Principle, and Molecular Mobility

    Get PDF
    Abstract Indicators for H2 are crucial to ensure safety standards in a green hydrogen economy. Herein, the authors report micron‐scaled indicator supraparticles for real‐time monitoring and irreversible recording of H2 gas via a rapid eye‐readable two‐step color change. They are produced via spray‐drying SiO2 nanoparticles, AuPd nanoparticles, and indicator‐dye resazurin. The resulting gas‐accessible mesoporous supraparticle framework absorbs water from humid atmospheres to create a three‐phase‐system. In the presence of H2, the color of the supraparticle switches first irreversibly from purple to pink and further reversibly to a colorless state. In situ infrared spectroscopy measurements indicate that this color change originates from the (ir)reversible H2‐induced reduction of resazurin to resorufin and hydroresorufin. Further infrared spectroscopic measurements and molecular dynamics simulations elucidate that key to achieve this functionality is an established three‐phase‐system within the supraparticles, granting molecular mobility of resazurin. Water acts as transport medium to carry resazurin molecules towards the catalytically active AuPd nanoparticles. The advantages of the supraparticles are their small dimensions, affordable and scalable production, fast response times, straightforward bare‐eye detection, and the possibility of simultaneously monitoring H2 exposure in real‐time and ex post. Therefore, H2 indicator supraparticles are an attractive safety additive for leakage detection and localization in a H2 economy

    Chitinase-like proteins promote IL-17-mediated neutrophilia in a tradeoff between nematode killing and host damage

    Get PDF
    Enzymatically inactive chitinase-like proteins (CLPs) such as BRP-39, Ym1 and Ym2 are established markers of immune activation and pathology, yet their functions are essentially unknown. We found that Ym1 and Ym2 induced the accumulation of neutrophils through the expansion of γδ T cell populations that produced interleukin 17 (IL-17). While BRP-39 did not influence neutrophilia, it was required for IL-17 production in γδ T cells, which suggested that regulation of IL-17 is an inherent feature of mouse CLPs. Analysis of a nematode infection model, in which the parasite migrates through the lungs, revealed that the IL-17 and neutrophilic inflammation induced by Ym1 limited parasite survival but at the cost of enhanced lung injury. Our studies describe effector functions of CLPs consistent with innate host defense traits of the chitinase family

    The Anomalous magnetic moment of the muon in the MSSM: Recent developments

    No full text
    We present recent results of two interesting classes of supersymmetric two-loop contributions to (g-2)_mu. Two-loop diagrams involving either a closed sfermion loop or a closed chargino/neutralino loop can amount to 5*10^{-10}, which is almost one standard deviation of the current experimental uncertainty. We discuss the dependence of these two classes on the unknown supersymmetric parameters and their impact on the supersymmetric prediction of (g-2)_mu.We present recent results of two interesting classes of supersymmetric two-loop contributions to (g-2)_mu. Two-loop diagrams involving either a closed sfermion loop or a closed chargino/neutralino loop can amount to 5*10^{-10}, which is almost one standard deviation of the current experimental uncertainty. We discuss the dependence of these two classes on the unknown supersymmetric parameters and their impact on the supersymmetric prediction of (g-2)_mu

    Box-enhanced charged lepton flavor violation in the Grimus-Neufeld model

    No full text
    In the Grimus-Neufeld model (GNM) the neutrino mass generation from an extended Higgs sector leads to bounds for charged lepton flavor violating (cLFV) processes. Here we update bounds from a previous study by extending the parameter space to a nonvanishing Majorana phase of the Pontecorvo-Maki-Nakagawa-Sakata matrix and to heavier charged Higgs boson masses. Three-body cLFV decays are shown to contribute significantly in the large mass regions, as the boxes are enhanced relatively to photonic diagrams. This is in contrast to the smaller mass region studied before, in which the two-body decays tightly restrict the parameter space. The Majorana phase is shown to change limits within 1 order of magnitude. The tiny seesaw scale is assumed, which makes the cLFV decays in the GNM similar to the cLFV decays in the scotogenic model and the scoto-seesaw models
    corecore